Learners Based on Transducers

  • Sanjay Jain
  • Shao Ning Kuek
  • Eric Martin
  • Frank Stephan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)


As data come out one by one from an infinite stream, automatic learners maintain some string as long term memory, and update it at every new datum (example) they process. Transduced learners are generalization of automatic learners. Both kind of learners are evaluated with respect to the space they consume for learning. For automatic learners, it is unknown whether at any point, the size of the long term memory can be bounded by the length of the longest datum that has been received so far. Here it is shown that, even when restricting learning to automatic families, there is a hierarchy of classes that can be learnt with memory \(O(n^k)\), and all automatic families which are learnable in principle can be learnt by a transduced learner using exponential sized memory.


Automata and logic Inductive inference Transducers 


  1. 1.
    Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control 45, 117–135 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Proceedings of the 20th International Congress of Mathematicians, Vancouver, pp. 455–460 (1974). (in Russian). English translation in American Mathematical Society Translations: Series 2, 109:107–112 (1977)Google Scholar
  3. 3.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28, 125–155 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Symposium on Logic in Computer Science, LICS 2000. pp. 51–62 (2000)Google Scholar
  5. 5.
    Case, J., Jain, S., Le, T.D., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learning of subclasses of pattern languages. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 192–203. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  6. 6.
    Case, J., Jain, S., Seah, S., Stephan, F.: Automatic functions, linear time and learning. Log. Methods Comput. Sci. 9(3:19), 1–26 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Case, J., Kötzing, T.: Difficulties in forcing fairness of polynomial time inductive inference. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS (LNAI), vol. 5809, pp. 263–277. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  8. 8.
    Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982). CrossRefGoogle Scholar
  9. 9.
    Case, J., Smith, C.: Comparison of identification criteria for machine inductive inference. Theor. Comput. Sci. 25, 193–220 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Freivalds, R., Kinber, E., Smith, C.H.: On the impact of forgetting on learning machines. J. ACM 42, 1146–1168 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hodgson, B.R.: Théories décidables par automate fini. Ph.D. thesis, Département de mathématiques et de statistique, Université de Montréal (1976)Google Scholar
  13. 13.
    Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. J. Comput. Syst. Sci. 78, 1910–1927 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jain, S., Ong, Y.S., Pu, S., Stephan, F.: On automatic families. In: Proceedings of the Eleventh Asian Logic Conference, in Honor of Professor Chong Chitat on his Sixtieth Birthday, pp. 94–113. World Scientific (2012)Google Scholar
  15. 15.
    Jain, S., Osherson, D.N., Royer, J.S., Sharma, A.: Systems That Learn, 2nd edn. Bradford—MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). CrossRefGoogle Scholar
  17. 17.
    Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Log. Methods Comput. Sci. 3(2:2), 1–18 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kinber, E., Stephan, F.: Language learning from texts: mind changes, limited memory and monotonicity. Inf. Comput. 123, 224–241 (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages from positive data: a survey. Theor. Comput. Sci. 397, 194–232 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nivat, M.: Transductions des langages de Chomsky. Annales de l’Institut Fourier, Grenoble 18, 339–455 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Inf. Control 53, 32–51 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Osherson, D., Stob, M., Weinstein, S.: Systems That Learn. An introduction to learning theory for cognitive and computer scientists. Bradford—MIT Press, Cambridge (1986)Google Scholar
  23. 23.
    Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989). CrossRefGoogle Scholar
  24. 24.
    Rubin, S.: Automata presenting structures: a survey of the finite string case. Bull. Symb. Log. 14, 169–209 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stephan, F.: Methods and theory of automata and languages. School of Computing, National University of Singapore (2016)Google Scholar
  26. 26.
    Wiehagen, R.: Limes-erkennung rekursiver funktionen durch spezielle strategien. J. Inf. Process. Cybern. (EIK) 12(1–2), 93–99 (1976)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sanjay Jain
    • 1
  • Shao Ning Kuek
    • 2
  • Eric Martin
    • 3
  • Frank Stephan
    • 1
    • 2
  1. 1.Department of Computer ScienceNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Department of MathematicsNational University of SingaporeSingaporeRepublic of Singapore
  3. 3.School of Computer Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations