A General Class of Monoids Supporting Canonisation and Minimisation of (Sub)sequential Transducers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)

Abstract

In this paper we consider the problems of canonisation and minimisation of subsequential transducer with output in an arbitrary monoid. We show that these problems can be efficiently solved for a large class of monoids that includes the free monoids, tropical monoid, and groups, and is closed under Cartesian Product. We describe this class of monoids in terms of five simple axioms. The first four of them seem to be natural. For the last one, we show that it is also necessary.

Keywords

Sequential transducers Minimisation Canonisation Monoids 

References

  1. 1.
    Breslauer, D.: The suffix tree of a tree and minimizing sequential transducers. Theor. Comput. Sci. 191(1–2), 131–144 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Choffrut, C.: Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationelles. Theor. Comput. Sci. 5, 325–338 (1977)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Daviaud, L., Reynier, P.A., Talbot, J.M.: A generalised twinning property for minimisation of cost register automata. In: Proceedings - Symposium on Logic in Computer Science, pp. 857–866 (2016)Google Scholar
  4. 4.
    Eilenberg, S.: Automata, Languages and Machines. Academic Press, New York (1974)MATHGoogle Scholar
  5. 5.
    Gerdjikov, S., Mihov, S.: Over which monoids is the transducer determinization procedure applicable? In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 380–392. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53733-7_28 CrossRefGoogle Scholar
  6. 6.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)MATHGoogle Scholar
  8. 8.
    Jardine, A., Chandlee, J., Eyraud, R., Heinz, J.: Very efficient learning of structured classes of subsequential functions from positive data. In: Proceedings of the 12th International Conference on Grammatical Inference, vol. 34, pp. 94–108 (2014)Google Scholar
  9. 9.
    Mohri, M.: On some applications of finite-state automata theory to natural language processing. J. Nat. Lang. Eng. 2, 1–20 (1996)CrossRefGoogle Scholar
  10. 10.
    Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269–311 (1997)MathSciNetGoogle Scholar
  11. 11.
    Mohri, M.: Minimization algorithms for sequential transducers. Theor. Comput. Sci. 234, 177–201 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Roche, E., Schabes, Y.: Introduction. In: Roche, E., Schabes, Y. (eds.) Finite-State Language Processing, pp. 1–66. MIT Press, Cambridge (1997)Google Scholar
  13. 13.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsSofia UniversitySofiaBulgaria
  2. 2.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations