Advertisement

Spotlight on Mathematics: Dislocations of Kant and Husserl

  • O. Bradley Bassler
Chapter

Abstract

Having “taxonomized” various positions related to the visionary critique of metaphysics in previous chapters, in this chapter I initiate a second level of the project, which I exemplify in the philosophy and foundations of mathematics with respect to the philosophical programs of Kant and Husserl. In each case, a particular feature of Kant’s or Husserl’s philosophy is “dislocated” and emphasized at the expense of others, much as I showed in Chap.  3 how practical rationality is dislocated and emphasized at the expense of theoretical rationality in the philosophies of Kant and Peirce. This chapter serves as an extended exercise in illustrating how visionary critique can be “lifted” to a second level through selective emphasis.

Bibliography

  1. Bassler, O. Bradley. “Mark van Atten’s On Brouwer,” Notre Dame Journal of Formal Logic 47:4 (2006), 581–599.CrossRefGoogle Scholar
  2. Bassler, O. Bradley. The Long Shadow of the Parafinite: Three Scenes from the Prehistory of a Concept (Boston: Docent, 2015).Google Scholar
  3. Church, A. “A Set of Postulates for the Foundation of Logic,” Annals of Mathematics 33 (1932) 346–66 and 34 (1932) 839–64.CrossRefGoogle Scholar
  4. Coffa, J. Alberto. The Semantic Tradition from Kant to Carnap: To the Vienna Station, ed. Linda Wessels (Cambridge: Cambridge University Press, 1991).CrossRefGoogle Scholar
  5. Eley, Lothar. Metakritik der Formalen Logik: Sinnliche Gewissheit als Horizont der Aussagenlogik und Elementaren Präikatenlogik (Den Haag: Martinus Nijhoff, 1969).CrossRefGoogle Scholar
  6. Husserl, Edmund. Experience and Judgment: Investigations in a Genealogy of Logic, revised and edited by Ludwig Landgrebe, trans. James S. Churchill and Karl Ameriks (Evanston: Northwestern University Press, 1973).Google Scholar
  7. Husserl, Edmund. Formal and Transcendental Logic, trans. Dorion Cairns (The Hague: Martinus Nijhoff, 1978).Google Scholar
  8. Kant, Immanuel. Critique of Pure Reason, trans. Werner Pluhar (Indianapolis: Hackett, 1996).Google Scholar
  9. Longuenesse, Béatrice. Kant and the Capacity to Judge: Sensibility and Discursivity in the Transcendental Analytic of the Critique of Pure Reason, trans. Charles T. Wolfe (Princeton: Princeton, 1998).Google Scholar
  10. Mancosu, Paolo. From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s (New York: Oxford, 1998).Google Scholar
  11. Marion, Mathieu. “Operations and Numbers in the Tractatus,” Wittgenstein Studien 2 (2000), 105–123.Google Scholar
  12. Marion, Mathieu. “Wittgenstein and Brouwer,” Synthese 131:1–2 (2003), 103–127.Google Scholar
  13. Marion, Mathieu. Wittgenstein, Finitism, and the Foundations of Mathematics (Oxford: Clarendon, 1998).Google Scholar
  14. Mayberry, J. P. The Foundations of Mathematics in the Theory of Sets (Cambridge: Cambridge, 2000).Google Scholar
  15. Rosenkoetter, Timothy. “Are Kantian analytic judgments about objects?”, in Recht und Frieden in der Philosophie Kants, ed. V. Rohden (Berlin: De Gruyter, 2008) 191–202.Google Scholar
  16. Rosenkoetter, Timothy. “Truth criteria and the very project of a transcendental logic”, Archiv für Geschichte der Philosophie 91:2 (2009), 1–49.Google Scholar
  17. van Atten, Mark. On Brouwer (Wadsworth, 2004).Google Scholar
  18. Wittgenstein, Ludwig. Wittgenstein’s Lectures on the Foundations of Mathematics Cambridge, 1939, ed. Cora Diamond (Ithaca: Cornell, 1976).Google Scholar
  19. Wittgenstein, Ludwig. Philosophical Grammar, ed. Rush Rhees, trans. Anthony Kenny (Berkeley: California, 1974).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • O. Bradley Bassler
    • 1
  1. 1.University of GeorgiaAthensUSA

Personalised recommendations