Advertisement

The Forest Behind (and Beyond) the Trees

  • Agustín Ibáñez
  • Adolfo M. García
Chapter
Part of the SpringerBriefs in Psychology book series (BRIEFSPSYCHOL)

Abstract

In this chapter, we first summarize the commonalities and differences between the Social Context Network Model (SCNM) and the Hand-Action-Network Dynamic Language Embodiment (HANDLE) model. Together, both models delineate the broad scope of a situated, integrative conception of human cognition. We also discuss their current translational, epistemological, and methodological implications. In particular, although both models are rooted in mainstream approaches within social and cognitive neuroscience, they favor a situated, synergistic view of mental processes. Such a conception paves the way for breakthroughs in understanding our mind’s sensus communis (the capacity to holistically make sense of our experiences by blending information from multiple sensorial, motor, and cognitive levels). At a theoretical level, we propose that intercognitive phenomena could be fruitfully approached assuming emergent, dynamical, and nonrepresentationalist views of neurocognition . This recast of mental phenomena rests on nonorthodox philosophical tenets. At an empirical level, we suggest new experimental designs and methodological implementations to foster a more naturalistic and ecological approach to intercognition. Building on these theoretical and methodological innovations, a context-based approach to embodied neurocognition may help to transcend the isolationist, passive, individualistic rationale that still dominates the field.

Keywords

SCNM HANDLE Situated cognition Synergistic view of mental processes Intercognition Sensus communis Emergent-dynamical-and-nonrepresentationalist views of neurocognition Ecological approach to cognition 

References

  1. Ardila A, Bernal B, Rosselli M. How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch Clin Neuropsychol. 2015;31(1):112–22.  https://doi.org/10.1093/arclin/acv081.CrossRefPubMedGoogle Scholar
  2. Baez S, Ibáñez A. The effects of context processing on social cognition impairments in adults with Asperger’s syndrome. Front Neurosci. 2014;8:270.CrossRefGoogle Scholar
  3. Baez S, Ibáñez A. Dementia in Latin America: an emergent silent tsunami. Front Aging Neurosci. 2016;8:253.CrossRefGoogle Scholar
  4. Baez S, Couto B, Torralva T, Sposato LA, Huepe D, Montanes P, et al. Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurol. 2014a;71(9):1172–6.CrossRefGoogle Scholar
  5. Baez S, Manes F, Huepe D, Torralva T, Fiorentino N, Richter F, et al. Primary empathy deficits in frontotemporal dementia. Front Aging Neurosci. 2014b;6:262.CrossRefGoogle Scholar
  6. Baez S, García AM, Ibáñez A. The social context network model in psychiatric and neurological diseases. Curr Top Behav Neurosci. 2016;30:379–96.  https://doi.org/10.1007/7854_2016_443. CrossRefGoogle Scholar
  7. Bak TH. The neuroscience of action semantics in neurodegenerative brain diseases. Curr Opin Neurol. 2013;26(6):671–7.CrossRefGoogle Scholar
  8. Barutta J, Aravena P, Ibáñez A. The machine paradigm and alternative approaches in cognitive science. Integr Psychol Behav Sci. 2010a;44(2):176–83.CrossRefGoogle Scholar
  9. Barutta J, Gleichgerrcht E, Cornejo C, Ibáñez A. Neurodynamics of mind: the arrow illusion of conscious intentionality as downward causation. Integr Psychol Behav Sci. 2010b;44(2):127–43.CrossRefGoogle Scholar
  10. Barutta J, Guex R, Ibáñez A. Does the PFC model of analogy account for decision making, problem solving, reasoning, flexibility, adaptability, and even creativity? Cogn Neurosci. 2010c;1(2):142–3.CrossRefGoogle Scholar
  11. Barutta J, Cornejo C, Ibáñez A. Theories and theorizers: a contextual approach to theories of cognition. Integr Psychol Behav Sci. 2011;45(2):223–46.CrossRefGoogle Scholar
  12. Becchio C, Sartori L, Castiello U. Toward you: the social side of actions. Curr Dir Psychol Sci. 2010;19(3):183–8.CrossRefGoogle Scholar
  13. Birba A, García-Cordero I, Kozono G, Legaz A, Ibáñez A, Sedeño L, García AM. Losing ground: Frontostriatal atrophy disrupts language embodiment in Parkinson’s and Huntington’s disease, Neuroscience & Biobehavioral Reviews, Volume 80, 2017, P. 673–87, ISSN 0149-7634, https://doi.org/10.1016/j.neubiorev.2017.07.011. (http://www.sciencedirect.com/science/article/pii/S0149763417300702)
  14. Borreggine KL, Kaschak MP. The action-sentence compatibility effect: It’s all in the timing. Cogn Sci. 2006;30:1097–112.CrossRefGoogle Scholar
  15. Cacioppo S, Capitanio JP, Cacioppo JT. Toward a neurology of loneliness. Psychol Bull. 2014;140(6):1464–504.CrossRefGoogle Scholar
  16. Campbell RL, Bickhard MH. Knowing levels and developmental stages. Basel: Karger; 1986.Google Scholar
  17. Cardona J, Kargieman L, Sinay V, Gershanik O, Gelormini C, Amoruso L, et al. How embodied is action language? Neurological evidence from motor diseases. Cognition. 2014a;131(2):311–22.  https://doi.org/10.1016/j.cognition.2014.02.001 CrossRefGoogle Scholar
  18. Cardona JF, Sinay V, Amoruso L, Hesse E, Manes F, Ibáñez A. The impact of neuromyelitis optica on the recognition of emotional facial expressions: a preliminary report. Soc Neurosci. 2014b;9(6):633–8.PubMedGoogle Scholar
  19. Caspi A, Moffitt TE. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci. 2006;7(7):583–90.CrossRefGoogle Scholar
  20. Cosci F, Fava GA, Sonino N. Mood and anxiety disorders as early manifestations of medical illness: a systematic review. Psychother Psychosom. 2015;84(1):22–9.CrossRefGoogle Scholar
  21. Dere E, Pause BM, Pietrowsky R. Emotion and episodic memory in neuropsychiatric disorders. Behav Brain Res. 2010;215(2):162–71.CrossRefGoogle Scholar
  22. Devenney E, Hornberger M, Irish M, Mioshi E, Burrell J, Tan R, et al. Frontotemporal dementia associated with the C9ORF72 mutation: a unique clinical profile. JAMA Neurol. 2014;71(3):331–9.CrossRefGoogle Scholar
  23. Devor A, Bandettini Peter A, Boas David A, Bower James M, Buxton Richard B, Cohen Lawrence B, et al. The Challenge of Connecting the Dots in the B.R.A.I.N. Neuron. 2013;80(2):270–4.CrossRefGoogle Scholar
  24. Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol. 2013;7(2):193–224.CrossRefGoogle Scholar
  25. Emmeche C, Koppe S, Stjernfelt F. Levels, emergence, and three versions of downward causation. In: Andersen PB, Emmeche C, Finnemann NO, Christiansen PV, editors. Downward causation: Aarhus. Denmark: University of Aarhus Press; 2000. p. 322–48.Google Scholar
  26. Engel AK, Maye A, Kurthen M, Konig P. Where’s the action? The pragmatic turn in cognitive science. Trends Cogn Sci. 2013;17(5):202–9.CrossRefGoogle Scholar
  27. Freeman WJ. Neurodynamic models of brain in psychiatry. Neuropsychopharmacology. 2003;28(Suppl 1):S54–63.CrossRefGoogle Scholar
  28. French MR, Thomas E. The dynamical hypothesis in cognitive science: a review essay of mind as motion. Mind Mach. 2001;11(1):101–11.CrossRefGoogle Scholar
  29. García AM, Ibáñez A. Two-person neuroscience and naturalistic social communication: the role of language and linguistic variables in brain-coupling research. Front Psych. 2014a;5:124.  https://doi.org/10.3389/fpsyt.2014.00124.CrossRefGoogle Scholar
  30. García A, Ibáñez A. Words in motion: motor-language coupling in Parkinson’s disease. Transl Neurosci. 2014b;5(2):152–9.CrossRefGoogle Scholar
  31. García AM, Bocanegra Y, Herrera E, Pino M, Muñoz E, Sedeño L, Ibáñez A. Action-semantic and syntactic deficits in subjects at risk for Huntington’s disease. J Neuropsychol. 2017a.  https://doi.org/10.1111/jnp.12120.
  32. García AM, Sedeño L, Trujillo N, Bocanegra Y, Gomez D, Pineda D, Villegas A, Muñoz E, Arias W, Ibáñez A. Language deficits as a preclinical window into Parkinson’s disease: evidence from asymptomatic parkin and dardarin mutation carriers. J Int Neuropsychol Soc. 2017b;23(2):150–8.  https://doi.org/10.1017/S1355617716000710.CrossRefGoogle Scholar
  33. García AM, Sedeño L, Herrera Murcia E, Couto B, Ibáñez A. A lesion-proof brain? Multidimensional sensorimotor, cognitive, and socio-affective preservation despite extensive damage in a stroke patient. Front Aging Neurosci. 2017c;8(335).  https://doi.org/10.3389/fnagi.2016.00335.
  34. Geschwind DH. Advances in autism. Annu Rev Med. 2009;60:367–80.CrossRefGoogle Scholar
  35. Hurley S. The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behav Brain Sci. 2008;31(1):1–22. discussion −58CrossRefGoogle Scholar
  36. Ibáñez A, Manes F. Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology. 2012;78:1354–62.CrossRefGoogle Scholar
  37. Ibáñez A, Aguado J, Baez S, Huepe D, Lopez V, Ortega R, et al. From neural signatures of emotional modulation to social cognition: individual differences in healthy volunteers and psychiatric participants. Soc Cogn Affect Neurosci. 2013a;9(7):939–50.  https://doi.org/10.1093/scan/nst067.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ibáñez A, Cardona JF, Dos Santos YV, Blenkmann A, Aravena P, Roca M, et al. Motor-language coupling: direct evidence from early Parkinson’s disease and intracranial cortical recordings. Cortex. 2013b;49(4):968–84.CrossRefGoogle Scholar
  39. Ibáñez A, Cosmelli D. Moving Beyond Computational Cognitivism: Understanding Intentionality, Intersubjectivity and Ecology of Mind. Integrative Psychological and Behavioral Science. 2008;42(2):129–36.CrossRefGoogle Scholar
  40. Ibáñez A, Kuljis RO, Matallana D, Manes F. Bridging psychiatry and neurology through social neuroscience. World Psychiatry. 2014;13(2):148–9.CrossRefGoogle Scholar
  41. Ibáñez A, García AM, Esteves S, Yoris A, Muñoz E, Reynaldo L, et al. Social neuroscience: undoing the schism between neurology and psychiatry. Soc Neurosci. 2016a.;  https://doi.org/10.1080/17470919.2016.1245214
  42. Ibáñez A, Billeke P, de la Fuente L, Salamone P, García A, Melloni M. Reply: towards a neurocomputational account of social dysfunction in neurodegenerative disease. Brain. 2016b;140(3):e15.  https://doi.org/10.1093/brain/aww316
  43. Ibanez A, Hesse E, Manes F, Garcia AM. Freeing free will: A neuroscientific perspective. 2017. In Mario Bunge (Ed): Doing science, Publisher: World Scientific, pp.161–176. DOI:  https://doi.org/10.1142/9789813202788_0012.CrossRefGoogle Scholar
  44. Ibáñez A, Sedeño L, García AM, Deacon RMJ, Cogram P. Editorial: Human and Animal Models for Translational Research on Neurodegeneration: Challenges and Opportunities From South America. Frontiers in Aging Neuroscience 10. 2018.Google Scholar
  45. Jiang J, Dai B, Peng D, Zhu C, Liu L, Neural Synchronization LC. During face-to-face communication. J Neurosci. 2012;32(45):16064–9.CrossRefGoogle Scholar
  46. Kargieman L, Herrera E, Baez S, García AM, Dottori M, Gelormini C, et al. Motor-language coupling in Huntington’s disease families. Front Aging Neurosci. 2014;6:122.CrossRefGoogle Scholar
  47. Kaschak MP, Borreggine KL. Temporal dynamics of the action-sentence compatibility effect. Q J Exp Psychol (Colchester). 2008;61(6):883–95.CrossRefGoogle Scholar
  48. Kim J. Mind in a physical world: an essay on the mind-body problem and mental causation. MIT Press. 2000;Google Scholar
  49. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 2002;7(Suppl 1):S71–80.CrossRefGoogle Scholar
  50. Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci. 2002;3(11):884–95.CrossRefGoogle Scholar
  51. Levenson RW, Sturm VE, Haase CM. Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology. Annu Rev Clin Psychol. 2014;10:581–606.CrossRefGoogle Scholar
  52. Lindquist KA, Barrett LF, Bliss-Moreau E, Russell JA. Language and the perception of emotion. Emotion. 2006;6(1):125–38.CrossRefGoogle Scholar
  53. Millan MJ, Agid Y, Brune M, Bullmore ET, Carter CS, Clayton NS, et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov. 2012;11(2):141–68.CrossRefGoogle Scholar
  54. Montague PR, Berns GS, Cohen JD, McClure SM, Pagnoni G, Dhamala M, et al. Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage. 2002;16(4):1159–64.CrossRefGoogle Scholar
  55. Parra MA, Baez S, Allegri R, Nitrini R, Lopera F, Slachevsky A, Custodio N, Lira D, Piguet O, Kumfor F, Huepe D, Cogram P, Bak T, Manes F, Ibanez A. Dementia in Latin America. Neurology. 2018;90(5):222–31.CrossRefGoogle Scholar
  56. Pickering MJ, Garrod S. An integrated theory of language production and comprehension. Behav Brain Sci. 2013;36(4):329–47.CrossRefGoogle Scholar
  57. Poeppel D, Embick D. Defining the relation between linguistics and neuroscience. In: Cutler A, editor. Twenty-first century psycholinguistics: four cornerstones. Mahwah: Lawrence Erlbaum; 2005. p. 103–18.Google Scholar
  58. Prince M, Bryce R, Ferr C. World Alzheimer report 2011: London, Alzheimer’s Disease International; 2011.Google Scholar
  59. Raichle ME. Two views of brain function. Trends Cogn Sci. 2010;14(4):180–90.CrossRefGoogle Scholar
  60. Roberson D, Davidoff J. The categorical perception of colors and facial expressions: the effect of verbal interference. Mem Cogn. 2000;28(6):977–86.CrossRefGoogle Scholar
  61. Robinson S, Goddard L, Dritschel B, Wisley M, Howlin P. Executive functions in children with autism spectrum disorders. Brain Cogn. 2009;71(3):362–8.CrossRefGoogle Scholar
  62. Rorden C, Karnath H-O. Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat Rev Neurosci. 2004;5(10):812–9.CrossRefGoogle Scholar
  63. Schilbach L, Timmermans B, Reddy V, Costall A, Bente G, Schlicht T, et al. Toward a second-person neuroscience. Behav Brain Sci. 2013;36(4):393–414.CrossRefGoogle Scholar
  64. Stephens GJ, Silbert LJ, Hasson U. Speaker–listener neural coupling underlies successful communication. Proc Natl Acad Sci. 2010;Google Scholar
  65. van Rooij I, Bongers RM, Haselager FG. A non-representational approach to imagined action. Cogn Sci. 2002;26(3):345–75.CrossRefGoogle Scholar
  66. Watermeyer TJ, Brown RG, Sidle KC, Oliver DJ, Allen C, Karlsson J, et al. Executive dysfunction predicts social cognition impairment in amyotrophic lateral sclerosis. J Neurol. 2015;10:10.Google Scholar
  67. Wheeler M. Reconstructing the cognitive world. Cambridge: MIT Press; 2005.Google Scholar
  68. Woods B, Aguirre E, Spector AE, Orrell M. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst Rev. 2012;2:CD005562.Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Agustín Ibáñez
    • 1
  • Adolfo M. García
    • 1
  1. 1.Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO FoundationFavaloro UniversityBuenos AiresArgentina

Personalised recommendations