Advertisement

Context as a Determinant of Interpersonal Processes: The Social Context Network Model

  • Agustín Ibáñez
  • Adolfo M. García
Chapter
Part of the SpringerBriefs in Psychology book series (BRIEFSPSYCHOL)

Abstract

Social meaning and interaction are shaped by situational elements (real or imagined, explicit or implicit). In this chapter, we introduce the Social Context Network Model (SCNM), which aims to capture the neuroanatomical underpinnings of contextual determinants of social cognition. In the SCNM, prefrontal areas are involved in the generation of focused predictions by updating associations among events (targets) in a specific context. Target-context associations and their experiential learning are indexed by temporal regions. Finally, insular networks support the convergence of emotional and cognitive states related to the coordination between external and internal milieus (or interoception). In brief, we propose that fronto-insulo-temporal networks are critical for the integration of interoceptive states and emotions with social information in order to predict and ascribe social meanings. This framework is then extended to dimensional and transnosological approaches to neuropsychiatry. We highlight how the SCNM can provide clinical and theoretical shortcuts for frontotemporal dementia, autism spectrum disorders, and other neuropsychiatric conditions, supporting a basic contextual impairment underlying social cognition deficits. We present new SCNM paradigms, testable dimensional and transdiagnostic hypotheses, and potential interventions for neuropsychiatric conditions. Finally, we propose a situated approach to formulate tasks that closely resemble everyday cognition while observing key methodological constraints.

Keywords

SCNM Predictive context Target-context associations Interoception Fronto-temporal-insular networks Neuropsychiatry Frontotemporal dementia Autism spectrum disorder 

References

  1. Adolfi F, Couto B, Richter F, Decety J, Lopez J, Sigman M, et al. Convergence of interoception, emotion, and social cognition: a twofold fMRI meta-analysis and lesion approach. Cortex. 2016;88:124–42.CrossRefGoogle Scholar
  2. Aviezer H, Bentin S, Hassin RR, Meschino WS, Kennedy J, Grewal S, Esmail S, Cohen S, Moscovitch M. Not on the face alone: perception of contextualized face expressions in Huntington’s disease. Brain. 2009;132:1633–44.CrossRefGoogle Scholar
  3. Baez S, Ibáñez A. The effects of context processing on social cognition impairments in adults with Asperger’s syndrome. Front Neurosci. 2014;8:270.CrossRefGoogle Scholar
  4. Baez S, Rattazzi A, Gonzalez-Gadea ML, Torralva T, Vigliecca NS, Decety J, et al. Integrating intention and context: assessing social cognition in adults with Asperger syndrome. Front Hum Neurosci. 2012;6:302.CrossRefGoogle Scholar
  5. Baez S, Herrera E, Villarin L, Theil D, Gonzalez-Gadea ML, Gomez P, et al. Contextual social cognition impairments in schizophrenia and bipolar disorder. PLoS One. 2013;8(3):e57664.CrossRefGoogle Scholar
  6. Baez S, Couto B, Torralva T, Sposato LA, Huepe D, Montanes P, et al. Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurol. 2014a;71(9):1172–6.CrossRefGoogle Scholar
  7. Baez S, Manes F, Huepe D, Torralva T, Fiorentino N, Richter F, et al. Primary empathy deficits in frontotemporal dementia. Front Aging Neurosci. 2014b;6:262.CrossRefGoogle Scholar
  8. Baez S, Herrera E, Gershanik O, García AM, Bocanegra Y, Kargieman L, et al. Impairments in negative emotion recognition and empathy for pain in Huntington’s disease families. Neuropsychologia. 2015a;68:158–67.CrossRefGoogle Scholar
  9. Baez S, Kanske P, Matallana D, Montanes P, Reyes P, Slachevsky A, et al. Integration of intention and outcome for moral judgment in frontotemporal dementia: brain structural signatures. Neurodegener Dis. 2015b;16(3–4):206–17.  https://doi.org/10.1159/000441918.CrossRefGoogle Scholar
  10. Baez S, Morales JP, Slachevsky A, Torralva T, Matus C, Manes F, et al. Orbitofrontal and limbic signatures of empathic concern and intentional harm in the behavioral variant frontotemporal dementia. Cortex. 2015c;75:20–32.CrossRefGoogle Scholar
  11. Baez S, García AM, Ibáñez A. The social context network model in psychiatric and neurological diseases. Curr Top Behav Neurosci. 2016a;30:379–96.  https://doi.org/10.1007/7854_2016_443. CrossRefGoogle Scholar
  12. Baez S, Kanske P, Matallana D, Montanes P, Reyes P, Slachevsky A, et al. Integration of intention and outcome for moral judgment in frontotemporal dementia: brain structural signatures. Neurodegener Dis. 2016b;16(3–4):206–17.  https://doi.org/10.1159/000441918.CrossRefPubMedGoogle Scholar
  13. Baez S, Santamaría-García H, Orozco J, Fittipaldi S, García A, Pino M, et al. Your misery is no longer my pleasure: reduced schadenfreude in Huntington’s disease families. Cortex. 2016c;83:78–85.  https://doi.org/10.1016/j.cortex.2016.07.009.CrossRefPubMedGoogle Scholar
  14. Baez S, Herrera E, García AM, Manes F, Young L, Ibáñez A. Outcome-oriented moral evaluation in terrorists. Nat Hum Behav. 2017.  https://doi.org/10.1038/s41562-017-0118.
  15. Bar M. Visual objects in context. Nat Rev Neurosci. 2004;5(8):617–29.CrossRefGoogle Scholar
  16. Barrett LF, Mesquita B, Gendron M. Context in emotion perception. Curr Dir Psychol Sci. 2011;20(5):286–90.CrossRefGoogle Scholar
  17. Bearden CE, Hoffman KM, Cannon TD. The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord. 2001;3(3):106–50. discussion 51-3CrossRefGoogle Scholar
  18. Brewer R, Happe F, Cook R, Bird G. Commentary on “autism, oxytocin and interoception”: alexithymia, not autism Spectrum disorders, is the consequence of interoceptive failure. Neurosci Biobehav Rev. 2015;56:348–53.CrossRefGoogle Scholar
  19. Burgess PW, Alderman N, Volle E, Benoit RG, Gilbert SJ. Mesulam’s frontal lobe mystery re-examined. Restor Neurol Neurosci. 2009;27(5):493–506.PubMedGoogle Scholar
  20. Couto B, Manes F, Montanes P, Matallana D, Reyes P, Velasquez M, et al. Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia. Front Hum Neurosci. 2013a;7:467.  https://doi.org/10.3389/fnhum.2013.00467.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Couto B, Sedeño L, Sposato LA, Sigman M, Riccio PM, Salles A, et al. Insular networks for emotional processing and social cognition: comparison of two case reports with either cortical or subcortical involvement. Cortex. 2013b;49(5):1420–34.CrossRefGoogle Scholar
  22. Couto B, Salles A, Sedeño L, Peradejordi M, Barttfeld P, Canales-Johnson A, et al. The man who feels two hearts: the different pathways of interoception. Soc Cogn Affect Neurosci. 2014;9(9):1253–60.  https://doi.org/10.1093/scan/nst108.CrossRefPubMedGoogle Scholar
  23. Couto B, Adolfi F, Sedeño L, Salles A, Canales-Johnson A, Alvarez-Abut P, et al. Disentangling interoception: insights from focal strokes affecting the perception of external and internal milieus. Front Psychol. 2015a;6(503).  https://doi.org/10.3389/fpsyg.2015.00503.
  24. Couto B, Adolfi F, Velasquez M, Mesow M, Feinstein J, Canales-Johnson A, et al. Heart evoked potential triggers brain responses to natural affective scenes: a preliminary study. Auton Neurosci. 2015b;3(15):30007–2.Google Scholar
  25. Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59–70.CrossRefGoogle Scholar
  26. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. 2010;14(4):172–9.CrossRefGoogle Scholar
  27. Friston KJ. The history of the future of the Bayesian brain. NeuroImage. 2012;62(2):1230–3.CrossRefGoogle Scholar
  28. García AM, Ibáñez A. Two-person neuroscience and naturalistic social communication: the role of language and linguistic variables in brain-coupling research. Front Psych. 2014a;5:124.  https://doi.org/10.3389/fpsyt.2014.00124.CrossRefGoogle Scholar
  29. García A, Ibáñez A. Words in motion: motor-language coupling in Parkinson’s disease. Transl Neurosci. 2014b;5(2):152–9.CrossRefGoogle Scholar
  30. García-Cordero I, Sedeño L, de la Fuente L, Slachevsky A, Forno G, Klein F, et al. Feeling, learning from, and being aware of inner states: interoceptive dimensions in neurodegeneration and stroke. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371(1708).  https://doi.org/10.1098/rstb.2016-0006. CrossRefGoogle Scholar
  31. Gonzalez-Gadea ML, Sigman M, Rattazzi A, Lavin C, Rivera-Rei A, Marino J, et al. Neural markers of social and monetary rewards in children with attention-deficit/hyperactivity disorder and autism spectrum disorder. Sci Rep. 2016;6:30588.CrossRefGoogle Scholar
  32. Hesse E, Mikulan E, Decety J, Sigman M, García MD, Silva W, et al. Early detection of intentional harm in the human amygdala. Brain J Neurol. 2015;Google Scholar
  33. Ibáñez A, Manes F. Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology. 2012;78:1354–62.CrossRefGoogle Scholar
  34. Ibáñez A, Gleichgerrcht E, Manes F. Clinical effects of insular damage in humans. Brain Struct Funct. 2010;214(5–6):397–410.CrossRefGoogle Scholar
  35. Ibáñez A, Kotz SA, Barrett L, Moll J, Ruz M. Situated affective and social neuroscience. Front Hum Neurosci. 2014a;8:547.  https://doi.org/10.3389/fnhum.2014.00547.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ibáñez A, Kuljis RO, Matallana D, Manes F. Bridging psychiatry and neurology through social neuroscience. World Psychiatry. 2014b;13(2):148–9.CrossRefGoogle Scholar
  37. Ibáñez A, García AM, Esteves S, Yoris A, Muñoz E, Reynaldo L, et al. Social neuroscience: undoing the schism between neurology and psychiatry. Soc Neurosci. 2016a.;  https://doi.org/10.1080/17470919.2016.1245214
  38. Ibáñez A, Billeke P, de la Fuente L, Salamone P, García A, Melloni M. Reply: towards a neurocomputational account of social dysfunction in neurodegenerative disease. Brain. 2016;140(3):e15.  https://doi.org/10.1093/brain/aww316 Google Scholar
  39. Ibáñez A, Sedeño L, García AM. Neuroscience and social science: the missing link. Switzerland: Springer. ISBN 978-3-319-68421-5; 2017.  https://doi.org/10.1007/978-3-319-68421-5.CrossRefGoogle Scholar
  40. Ibáñez A, Zimerman M, Sedeño L, Lori N, Rapacioli M, Cardona JF, Suarez DMA, Herrera E, García AM, Manes F. Early bilateral and massive compromise of the frontal lobes. NeuroImage: Clini. 2018;18:543–52.CrossRefGoogle Scholar
  41. Irish M, Hodges JR, Piguet O. Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia. Brain. 2014;137(Pt 4):1241–53.CrossRefGoogle Scholar
  42. Keysers C, Gazzola V. Integrating simulation and theory of mind: from self to social cognition. Trends Cogn Sci. 2007;11(5):194–6.CrossRefGoogle Scholar
  43. Kumfor F, Ibañez A, Hutchings R, Hazelton JL, Hodges JR, Piguet O. Beyond the face: how context modulates emotion processing in frontotemporal dementia subtypes. Brain. 2018;141(4):1172–85.CrossRefGoogle Scholar
  44. Lee KH, Siegle GJ. Common and distinct brain networks underlying explicit emotional evaluation: a meta-analytic study. Soc Cogn Affect Neurosci. 2012;7(5):521–34.CrossRefGoogle Scholar
  45. Liang X, Zou Q, He Y, Yang Y. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci U S A. 2013;110(5):1929–34.CrossRefGoogle Scholar
  46. Mayes AR, Roberts N. Theories of episodic memory. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356(1413):1395–408.CrossRefGoogle Scholar
  47. Melloni M, Lopez V, Ibáñez A. Empathy and contextual social cognition. Cogn Affect Behav Neurosci. 2014;14(1):407–25.CrossRefGoogle Scholar
  48. Melloni M, Billeke P, Baez S, Hesse E, de la Fuente L, Forno G, et al. Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining. Brain. 2016;139(11):3022–40.  https://doi.org/10.1093/brain/aww231 CrossRefGoogle Scholar
  49. Mesulam MM. Frontal cortex and behavior. Ann Neurol. 1986;19(4):320–5.CrossRefGoogle Scholar
  50. Mesulam MM. 2. The human frontal lobes: transcending the default mode through contingent encoding. Princ Front Lobe Funct. 2002;1(9):8–31.CrossRefGoogle Scholar
  51. Piguet O, Hornberger M, Mioshi E, Hodges JR. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol. 2011;10(2):162–72.CrossRefGoogle Scholar
  52. Rankin KP, Gorno-Tempini ML, Allison SC, Stanley CM, Glenn S, Weiner MW, et al. Structural anatomy of empathy in neurodegenerative disease. Brain J Neurol. 2006;129(Pt 11):2945–56.CrossRefGoogle Scholar
  53. Santamaria-García H, Reyes P, García A, Baez S, Martinez A, Santacruz JM, et al. First symptoms and neurocognitive correlates of behavioral variant frontotemporal dementia. J Alzheimers Dis. 2016;54(3):957–70.CrossRefGoogle Scholar
  54. Santamaría-García H, Baez S, Reyes P, Santamaría-García JA, Santacruz-Escudero JM, Matallana D, Arévalo A, Sigman M, García AM, Ibáñez A. A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration. Brain. 2017;140(12):3357–77.CrossRefGoogle Scholar
  55. Schilbach L, Eickhoff SB, Cieslik EC, Kuzmanovic B, Vogeley K. Shall we do this together? Social gaze influences action control in a comparison group, but not in individuals with high-functioning autism. Autism. 2012;16(2):151–62.CrossRefGoogle Scholar
  56. Schilbach L, Timmermans B, Reddy V, Costall A, Bente G, Schlicht T, et al. Toward a second-person neuroscience. Behav Brain Sci. 2013;36(4):393–414.CrossRefGoogle Scholar
  57. Schneider D, Slaughter VP, Bayliss AP, Dux PE. A temporally sustained implicit theory of mind deficit in autism spectrum disorders. Cognition. 2013;129(2):410–7.CrossRefGoogle Scholar
  58. Sedeño L, Couto B, García-Cordero I, Melloni M, Baez S, Morales JP, et al. Brain network organization and social executive performance in frontotemporal dementia. J Int Neuropsychol Soc. 2015;22(2):250–62.  https://doi.org/10.1017/S1355617715000703. CrossRefGoogle Scholar
  59. Sedeño L, Piguet O, Abrevaya S, Desmaras H, García-Cordero I, Baez S, Alethia de la Fuente L, Reyes P, Tu S, Moguilner S, Lori N, Landin-Romero R, Matallana D, Slachevsky A, Torralva T, Chialvo D, Kumfor F, García AM, Manes F, Hodges JR, Ibanez A. Tackling variability: a multicenter study to provide a gold-standard network approach for frontotemporal dementia. Hum Brain Mapp. 2017.  https://doi.org/10.1002/hbm.23627.
  60. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.CrossRefGoogle Scholar
  61. Viskontas IV, Possin KL, Miller BL. Symptoms of frontotemporal dementia provide insights into orbitofrontal cortex function and social behavior. Ann N Y Acad Sci. 2007;1121:528–45.CrossRefGoogle Scholar
  62. Wong AH, Van Tol HH. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev. 2003;27(3):269–306.CrossRefGoogle Scholar
  63. Yoris A, García AM, Traiber L, Santamaría-García H, Martorell M, Alifano F, Kichic R, Moser JS, Cetkovich M, Manes F, Ibáñez A, Sedeño L. The inner world of overactive monitoring: neural markers of interoception in obsessive-compulsive disorder. Psychol Med. 2017;4:1–14.  https://doi.org/10.1017/S0033291717000368.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Agustín Ibáñez
    • 1
  • Adolfo M. García
    • 1
  1. 1.Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO FoundationFavaloro UniversityBuenos AiresArgentina

Personalised recommendations