Advertisement

EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation

  • Sandrine BonyEmail author
  • Bjorn Stevens
  • Felix Ament
  • Sebastien Bigorre
  • Patrick Chazette
  • Susanne Crewell
  • Julien Delanoë
  • Kerry Emanuel
  • David Farrell
  • Cyrille Flamant
  • Silke Gross
  • Lutz Hirsch
  • Johannes Karstensen
  • Bernhard Mayer
  • Louise Nuijens
  • James H. RuppertJr.
  • Irina Sandu
  • Pier Siebesma
  • Sabrina Speich
  • Frédéric Szczap
  • Julien Totems
  • Raphaela Vogel
  • Manfred Wendisch
  • Martin Wirth
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 65)

Abstract

Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of tradecumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of tradecumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air–sea interactions and convective organization.

Keywords

Trade-wind cumulus Shallow convection Cloud feedback Atmospheric circulation Field campaign 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge Aure´lien Bourdon, the CNRS-Me´te´o-France-CNES SAFIRE facility for the scientific airborne operations (http://www.safire.fr), Didier Bruneau and Jacques Pelon for technical discussions, and the professional ULA pilot Franck Toussaint and the Air Creation company for having made the ULA-borne lidar tests possible. The paper benefited from stimulating discussions at the International Space Science Institute (ISSI) workshop on ‘‘Shallow clouds and water vapour, circulation and climate sensitivity’’. The EUREC4A project is supported by the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694768), by the Max Planck Society and by DFG (Deutsche Forschungsgemeinschaft, German Research Foundation) Priority Program SPP 1294.

References

  1. Albrecht BA, Betts AK, Schubert WH, Cox SK (1979) Model of the thermodynamic structure of the tradewind boundary layer: part I. theoretical formulation and sensitivity tests. J Atmos Sci 36(1):73–89.  https://doi.org/10.1175/1520-0469(1979)036<0073:MOTTSO>2.0.CO;2
  2. Albrecht BA, Bretherton CS, Johnson D, Scubert WH, Frisch AS (1995) The Atlantic stratocumulus transition experiment ASTEX. Bull Am Meteorol Soc 76(6):889–904.  https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2
  3. Alkasem A, Szczap F, Cornet C, Shcherbakov V, Gour Y, Jourdan O, Labonnote LC, Mioche G (2017) Effects of cirrus heterogeneity on lidar CALIOP/CALIPSO data. J Quant Spectrosc Radiat Transf 202:38–49.  https://doi.org/10.1016/j.jqsrt.2017.07.005
  4. Asrar G, Bony S, Boucher O, Busalacchi A, Cazenave A, Dowell M, Flato G, Hegerl G, Kallen E, Nakajima T, Ratier A, Saunders R, Slingo J, Sohn BJ, Schmetz J, Stevens B, Zhang P, Zwiers F (2015) Climate symposium 2014: findings and recommendations. Bull Am Meteorol Soc 96(9):ES145–ES147.  https://doi.org/10.1175/BAMS-D-15-00003.1
  5. Augstein E, Riehl H, Ostapoff F, Wagner V (1973) Mass and energy transports in an undisturbed Atlantic trade-wind flow. Mon Weather Rev 101(2):101–111.  https://doi.org/10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO;2
  6. Augstein E, Schmidt H, Ostapoff F (1974) The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic ocean. Bound Layer Meteorol 6(1):129–150.  https://doi.org/10.1007/BF00232480
  7. Bony S, Dufresne JL (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32(L20):806.  https://doi.org/10.1029/2005GL023,851
  8. Bony S, Dufresne JL, LeTreut H, Morcrette JJ, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86Google Scholar
  9. Bony S, Stevens B, Frierson DMW, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M, Webb MJ (2015) Clouds, circulation and climate sensitivity. Nat Geosci 8:261–268.  https://doi.org/10.1038/ngeo2398
  10. Borg LA, Bennartz R (2007) Vertical structure of stratiform marine boundary layer clouds and its impact on cloud albedo. Geophy Res Lett 34(5):l05807.  https://doi.org/10.1029/2006GL028713
  11. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and aerosols. Cambridge University Press, Cambridge. book section 7:571–658.  https://doi.org/10.1017/CBO9781107415324.016
  12. Bretherton CS (2015) Insights into low-latitude cloud feedbacks from high-resolution models. Philos Trans R Soc Lond A Math Phys Eng Sci.  https://doi.org/10.1098/rsta.2014.0415
  13. Brient F, Bony S (2012) How may low-cloud radiative properties simulated in the current climate influence low-cloud feedbacks under global warming? Geophys Res Lett 39(20):l20807.  https://doi.org/10.1029/2012GL053265
  14. Brient F, Bony S (2013) Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim Dyn 40(9):2415–2431.  https://doi.org/10.1007/s00382-011-1279-7
  15. Brient F, Schneider T, Tan Z, Bony S, Qu X, Hall A (2016) Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Clim Dyn 47(1):433–449.  https://doi.org/10.1007/s00382-015-2846-0
  16. Brogniez G, Pietras C, Legrand M, Dubuisson P, Haeffelin M (2003) A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part II: behavior in field experiments. J Atmos Ocean Technol 20(7):1023–1033.  https://doi.org/10.1175/1520-0426(2003)20<1023:AHMRFI>2.0.CO;2
  17. Brueck M, Nuijens L, Stevens B (2015) On the seasonal and synoptic time-scale variability of the north atlantic trade wind region and its low-level clouds. J Atmos Sci 72(4):1428–1446.  https://doi.org/10.1175/JAS-D-14-0054.1
  18. Bruneau D, Pelon J (2003) Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a mach-zehnder interferometer: principle of operation and performance assessment. Appl Opt 42(6):1101–1114.  https://doi.org/10.1364/AO.42.001101
  19. Bruneau D, Pelon J, Blouzon F, Spatazza J, Genau P, Buchholtz G, Amarouche N, Abchiche A, Aouji O (2015) 355-nm high spectral resolution airborne lidar lng: system description and first results. Appl Opt 54(29):8776–8785.  https://doi.org/10.1364/AO.54.008776
  20. Byrne D, Papritz L, Frenger I, Münnich M, Gruber N (2015) Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the south atlantic. J Atmos Sci 72(5):1872–1890.  https://doi.org/10.1175/JAS-D-14-0195.1
  21. Chazette P (2016) Exceptional aerosol pollution plume observed using a new ULA-lidar approach. Atmosph Environ 141:470–480.  https://doi.org/10.1016/j.atmosenv.2016.07.015
  22. Chazette P, Sanak J, Dulac F (2007) New approach for aerosol profiling with a lidar onboard an ultralight aircraft: application to the african monsoon multidisciplinary analysis. Environ Sci Technol 41:8335–8341Google Scholar
  23. Chazette P, Marnas F, Totems J, Shang X (2014) Comparison of iasi water vapor retrieval with h2o-raman lidar in the framework of the mediterranean hymex and charmex programs. Atmos Chem Phys 14(18):9583–9596.  https://doi.org/10.5194/acp-14-9583-2014
  24. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent smallscale features in ocean winds. Science 303(5660):978–983.  https://doi.org/10.1126/science.1091901
  25. Ciesielski PE, Schubert WH, Johnson RH (1999) Large-scale heat and moisture budgets over the astex region. J Atmos Sci 56(18):3241–3261.  https://doi.org/10.1175/1520-0469(1999)056<3241:LSHAMB>2.0.CO;2
  26. Cornet C, Labonnote L, Szczap F (2010) Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. J Quant Spectrosc Radiat Transf 111(1):174–186.  https://doi.org/10.1016/j.jqsrt.2009.06.013
  27. Dal Gesso S, Siebesma AP, de Roode SR (2015) Evaluation of low-cloud climate feedback through singlecolumn model equilibrium states. Q J R Meteorol Soc 141(688):819–832.  https://doi.org/10.1002/qj.2398
  28. Delanoë J, Protat A, Jourdan O, Pelon J, Papazzoni M, Dupuy R, Gayet JF, Jouan C (2013) Comparison of airborne in situ, airborne radar–lidar, and spaceborne radar-lidar retrievals of polar ice cloud properties sampled during the polarcat campaign. J Atmos Ocean Technol 30(1):57–73.  https://doi.org/10.1175/JTECH-D-11-00200.1
  29. Delanoë J, Protat A, Vinson JP, Brett W, Caudoux C, Bertrand F, du Chatelet JP, Hallali R, Barthes L, Haeffelin M, Dupont JC (2016) Basta: a 95-GHz fmcw doppler radar for cloud and fog studies. J Atmos Ocean Technol 33(5):1023–1038.  https://doi.org/10.1175/JTECH-D-15-0104.1
  30. Ehrlich A, Bierwirth E, Wendisch M, Gayet JF, Mioche G, Lampert A, Heintzenberg J (2008) Cloud phase identification of arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches. Atmos Chem Phys 8(24):7493–7505.  https://doi.org/10.5194/acp-8-7493-2008
  31. Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782Google Scholar
  32. Esselborn M, Wirth M, Fix A, Tesche M, Ehret G (2008) Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl Opt 47(3):346–358.  https://doi.org/10.1364/AO.47.000346
  33. Ewald F, Kölling T, Baumgartner A, Zinner T, Mayer B (2016) Design and characterization of specMACS, a multipurpose hyperspectral cloud and sky imager. Atmos Meas Tech 9(5):2015–2042.  https://doi.org/10.5194/amt-9-2015-2016
  34. Ferreira D, Frankignoul C (2008) Transient atmospheric response to interactive sst anomalies. J Clim 21(3):576–583.  https://doi.org/10.1175/2007JCLI1704.1
  35. Frenger I, Gruber N, Knutti R, Münnich M (2013) Imprint of southern ocean eddies on winds, clouds and rainfall. Nat Geosci 6(8):608–612Google Scholar
  36. Garcia JR, Mellado JP (2014) The two-layer structure of the entrainment zone in the convective boundary layer. J Atmos Sci 71(6):1935–1955Google Scholar
  37. Gettelman A, Kay JE, Shell KM (2012) The evolution of climate sensitivity and climate feedbacks in the community atmosphere model. J Clim 25(5):1453–1469.  https://doi.org/10.1175/JCLI-D-11-00197.1
  38. Ghate VP, Miller MA, DiPretore L (2011) Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J Geophys Res Atmos 116(D16):d16206.  https://doi.org/10.1029/2010JD015344
  39. Ghate VP, Miller MA, Zhu P (2016) Differences between nonprecipitating tropical and trade wind marine shallow cumuli. Mon Weather Rev 144(2):681–701.  https://doi.org/10.1175/MWR-D-15-0110.1
  40. Gille ST, Llewellyn Smith SG, Lee SM (2003) Measuring the sea breeze from quikscat scatterometry. Geophys Res Lett 30(3):1114.  https://doi.org/10.1029/2002GL016230
  41. Holland JZ (1970) Preliminary report on the bomex sea–air interaction program. Bull Am Meteorol Soc 51(9):809–820.  https://doi.org/10.1175/1520-0477(1970)051<0809:PROTBS>2.0.CO;2
  42. Holland JZ, Rasmusson EM (1973) Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon Weather Rev 101(1):44–55.  https://doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2
  43. Horváth A, Gentemann C (2007) Cloud-fraction-dependent bias in satellite liquid water path retrievals of shallow, non-precipitating marine clouds. Geophys Res Lett 34(22):l22806.  https://doi.org/10.1029/2007GL030625
  44. Illingworth AJ, Barker HW, Beljaars A, Ceccaldi M, Chepfer H, Clerbaux N, Cole J, Delanoë J, Domenech C, Donovan DP, Fukuda S, Hirakata M, Hogan RJ, Huenerbein A, Kollias P, Kubota T, Nakajima T, Nakajima TY, Nishizawa T, Ohno Y, Okamoto H, Oki R, Sato K, Satoh M, Shephard MW, Velàzquez-Blàzquez A, Wandinger U, Wehr T, van Zadelhoff GJ (2015) The earthcare satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull Am Meteorol Soc 96(8):1311–1332.  https://doi.org/10.1175/BAMS-D-12-00227.1
  45. Karlsson J, Svensson G, Rodhe H (2008) Cloud radiative forcing of subtropical low level clouds in global models. Clim Dyn 30(7):779–788.  https://doi.org/10.1007/s00382-007-0322-1
  46. Kollias P, Albrecht B (2010) Vertical velocity statistics in fair-weather cumuli at the arm twp nauru climate research facility. J Clim 23(24):6590–6604.  https://doi.org/10.1175/2010JCLI3449.1
  47. Lamer K, Kollias P, Nuijens L (2015) Observations of the variability of shallow trade wind cumulus cloudiness and mass flux. J Geophys Res Atmos 120(12):6161–6178.  https://doi.org/10.1002/2014JD022950
  48. Laxenaire R, Speich S, Blanke B, Chaigneau A, Pegliasco C (2017) Extended agulhas ring trajectories connecting the Indo-Atlantic western boundaries as inferred from altimetry. Geophys Res Lett (accepted)Google Scholar
  49. LeMone MA, Pennell WT (1976) The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon Weather Rev 104(5):524–539.  https://doi.org/10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2
  50. Lenschow DH, Krummel PB, Siems ST (1999) Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J Atmos Ocean Technol 16(10):1384–1400.  https://doi.org/10.1175/1520-0426(1999)016<1384:MEDAVO>2.0.CO;2
  51. Lenschow DH, Savic-Jovcic V, Stevens B (2007) Divergence and vorticity from aircraft air motion measurements. J Atmos Ocean Technol 24(12):2062–2072.  https://doi.org/10.1175/2007JTECHA940.1
  52. Lilly DK (1968) Models of cloud-topped mixed layers under a strong inversion. Q J R Meteorol Soc 94:292–309Google Scholar
  53. Mayer B (2009) Radiative transfer in the cloudy atmosphere. EPJ Web Conf 1:75–99.  https://doi.org/10.1140/epjconf/e2009-00912-1
  54. McWilliams JC (2016) Submesoscale currents in the ocean. Proc R Soc Lond A Math Phys Eng Sci.  https://doi.org/10.1098/rspa.2016.0117
  55. Mech M, Orlandi E, Crewell S, Ament F, Hirsch L, Hagen M, Peters G, Stevens B (2014) Hamp—the microwave package on the high altitude and long range research aircraft (halo). Atmos Meas Tech 7(12):4539–4553.  https://doi.org/10.5194/amt-7-4539-2014
  56. Medeiros B, Nuijens L (2016) Clouds at barbados are representative of clouds across the trade wind regions in observations and climate models. Proc Nat Acad Sci 113(22):E3062–E3070.  https://doi.org/10.1073/pnas.1521494113
  57. Medeiros B, Stevens B, Held I, Zhao M, Williamson DL, Olson J, Bretherton C (2008) Aquaplanets, climate sensitivity, and low clouds. J Clim 21:4974–4991Google Scholar
  58. Medeiros B, Stevens B, Bony S (2015) Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Clim Dyn 44(7):1957–1977.  https://doi.org/10.1007/s00382-014-2138-0
  59. Muller CJ, Held IM (2012) Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J Atmos Sci 69:2551–2565.  https://doi.org/10.1175/JAS-D-11-0257.1
  60. Nam C, Bony S, Dufresne JL, Chepfer H (2012) The’too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys Res Lett.  https://doi.org/10.1029/2012GL053421
  61. Naumann AK, Stevens B, Hohenegger C, Mellado JP (2017) A conceptual model of a shallow circulation induced by prescribed low-level radiative cooling. J Atmos Sci (in press)Google Scholar
  62. Neggers R, Stevens B, Neelin JD (2006) A simple equilibrium model for shallow-cumulus-topped mixed layers. Theor Comput Fluid Dyn 20(5):305–322.  https://doi.org/10.1007/s00162-006-0030-1
  63. Neggers RAJ (2015) Exploring bin-macrophysics models for moist convective transport and clouds. J Adv Model Earth Syst 7(4):2079–2104.  https://doi.org/10.1002/2015MS000502
  64. Nitta T, Esbensen S (1974a) Diurnal variations in the western atlantic trades during the bomex. J Meteorol Soc Jpn Ser II 52(2):254–257Google Scholar
  65. Nitta T, Esbensen S (1974b) Heat and moisture budget analyses using bomex data. Mon Weather Rev 102(1):17–28.  https://doi.org/10.1175/1520-0493(1974)102<0017:HAMBAU>2.0.CO;2
  66. Norris JR (1998) Low cloud type over the ocean from surface observations. Part II: geographical and seasonal variations. J Clim 11:383–403Google Scholar
  67. Nuijens L, Stevens B, Siebesma AP (2009) The environment of precipitating shallow cumulus convection. J Atmos Sci 66(7):1962–1979.  https://doi.org/10.1175/2008JAS2841.1
  68. Nuijens L, Serikov I, Hirsch L, Lonitz K, Stevens B (2014) The distribution and variability of low-level cloud in the north Atlantic trades. Q J R Meteorol Soc 140(684):2364–2374.  https://doi.org/10.1002/qj.2307
  69. Nuijens L, Medeiros B, Sandu I, Ahlgrimm M (2015a) The behavior of trade-wind cloudiness in observations and models: the major cloud components and their variability. J Adv Model Earth Syst 7(2):600–616.  https://doi.org/10.1002/2014MS000390
  70. Nuijens L, Medeiros B, Sandu I, Ahlgrimm M (2015b) Observed and modeled patterns of covariability between low-level cloudiness and the structure of the trade-wind layer. J Adv Model Earth Syst 7(4):1741–1764.  https://doi.org/10.1002/2015MS000483
  71. Oue M, Kollias P, North KW, Tatarevic A, Endo S, Vogelmann AM, Gustafson WI (2016) Estimation of cloud fraction profile in shallow convection using a scanning cloud radar. Geophys Res Lett 43(20):10998–11006.  https://doi.org/10.1002/2016GL070776
  72. Polichtchouk I, Shepherd TG (2016) Zonal-mean circulation response to reduced air–sea momentum roughness. Q J R Meteorol Soci 142(700):2611–2622.  https://doi.org/10.1002/qj.2850
  73. Rauber RM, Stevens B, Ochs HT III, Knight C, Albrecht BA, Blyth AM, Fairall CW, Jensen JB, Lasher-Trapp SG, Mayol-Bracero OL, Vali G, Anderson JR, Baker BA, Bandy AR, Burnet E, Brenguier JL, Brewer WA, Brown PRA, Chuang P, Cotton WR, Di Girolamo L, Geerts B, Gerber H, Göke S, Gomes L, Heikes BG, Hudson JG, Kollias P, Lawson RP, Krueger SK, Lenschow DH, Nuijens L, O’Sullivan DW, Rilling RA, Rogers DC, Siebesma AP, Snodgrass E, Stith JL, Thornton DC, Tucker S, Twohy CH, Zuidema P (2007) Rain in shallow cumulus over the ocean: the RICO campaign. Bull Am Meteorol Soc 88(12):1912–1928.  https://doi.org/10.1175/BAMS-88-12-1912
  74. Raymond DJ (1995) Regulation of moist convection over the west pacific warm pool. J Atmos Sci 52(22):3945–3959.  https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2
  75. Reul N, Chapron B, Lee T, Donlon C, Boutin J, Alory G (2014) Sea surface salinity structure of the meandering gulf stream revealed by smos sensor. Geophys Res Lett 41(9):3141–3148.  https://doi.org/10.1002/2014GL059215
  76. Rieck M, Nuijens L, Stevens B (2012) Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J Atmos Sci 69:2538–2550.  https://doi.org/10.1175/JAS-D-11-0203.1
  77. Roca R, Brogniez H, Chambon P, Chomette O, Cloché S, Gosset ME, Mahfouf JF, Raberanto P, Viltard N (2015) The Megha–Tropiques mission: a review after three years in orbit. Front Earth Sci 3:17.  https://doi.org/10.3389/feart.2015.00017
  78. Rodts SMA, Duynkerke PG, Jonker HJJ (2003) Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J Atmos Sci 60(16):1895–1912.  https://doi.org/10.1175/1520-0469(2003)060<1895:SDADPO>2.0.CO;2
  79. Rudzin JE, Shay LK, Jaimes B, Brewster JK (2017) Upper ocean observations in eastern caribbean sea reveal barrier layer within a warm core eddy. J Geophys Res Oceans 122(2):1057–1071.  https://doi.org/10.1002/2016JC012339
  80. Ruppert JH (2016) Diurnal timescale feedbacks in the tropical cumulus regime. J Adv Model Earth Syst 8(3):1483–1500.  https://doi.org/10.1002/2016MS000713
  81. Ruppert JH, Johnson RH (2015) Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during dynamo. J Atmos Sci 72(4):1622–1647.  https://doi.org/10.1175/JAS-D-14-0218.1
  82. Ruppert JH, Johnson RH (2016) On the cumulus diurnal cycle over the tropical warm pool. J Adv Model Earth Syst 8(2):669–690.  https://doi.org/10.1002/2015MS000610
  83. Schlemmer L, Bechtold P, Sandu I, Ahlgrimm M (2017) Uncertainties related to the representation of momentum transport in shallow convection. J Adv Model Earth Syst 9:1269–1291.  https://doi.org/10.1002/2017MS000915
  84. Seifert A, Heus T (2013) Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos Chem Phys 13(11):5631–5645.  https://doi.org/10.5194/acp-13-5631-2013
  85. Sherwood SC, Bony S, Dufresne JL (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505:37–42.  https://doi.org/10.1038/nature12829
  86. Siebesma AP, Cuijpers JWM (1995) Evaluation of parametric assumptions for shallow cumulus convection. J Atmos Sci 52(6):650–666.  https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2
  87. Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng CH, Sanchez E, Stevens B, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60(10):1201–1219.  https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
  88. Simpson IR, Shaw TA, Seager R (2014) A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J Atmos Sci 71(7):2489–2515.  https://doi.org/10.1175/JAS-D-13-0325.1
  89. Stevens B (2006) Bulk boundary-layer concepts for simplified models of tropical dynamics. Theor Comput Fluid Dyn 20(5):279–304.  https://doi.org/10.1007/s00162-006-0032-z
  90. Stevens B, Ackerman AS, Albrecht BA, Brown AR, Chlond A, Cuxart J, Duynkerke PG, Lewellen DC, Macvean MK, Neggers RAJ, Sánchez E, Siebesma AP, Stevens DE (2001) Simulations of trade wind cumuli under a strong inversion. J Atmos Sci 58(14):1870–1891.  https://doi.org/10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2
  91. Stevens B, Farrell D, Hirsch L, Jansen F, Nuijens L, Serikov I, Brügmann B, Forde M, Linne H, Lonitz K, Prospero JM (2016) The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull Am Meteorol Soc 97(5):787–801.  https://doi.org/10.1175/BAMS-D-14-00247.1
  92. Stubenrauch CJ, Rossow WB, Kinne S, Ackerman S, Cesana G, Chepfer H, Girolamo LD, Getzewich B, Guignard A, Heidinger A, Maddux BC, Menzel WP, Minnis P, Pearl C, Platnick S, Poulsen C, Riedi J, Sun-Mack S, Walther A, Winker D, Zeng S, Zhao G (2013) Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull Am Meteorol Soc 94(7):1031–1049.  https://doi.org/10.1175/BAMS-D-12-00117.1
  93. Szczap F, Cornet C, Alkasem A, Gour Y, Labonnote L, Jourdan O (2013) A 3D polarized Monte Carlo LIDAR System simulator for studying effects of cirrus inhomogeneities on CALIOP/CALIPSO measurements. In: IRS2012 proceedingsGoogle Scholar
  94. Tomassini L, Voigt A, Stevens B (2015) On the connection between tropical circulation, convective mixing, and climate sensitivity. Q J R Meteorol Soc 141(689):1404–1416.  https://doi.org/10.1002/qj.2450
  95. van Zanten MC, Stevens B, Nuijens L, Siebesma AP, Ackerman AS, Burnet F, Cheng A, Couvreux F, Jiang H, Khairoutdinov M, Kogan Y, Lewellen DC, Mechem D, Nakamura K, Noda A, Shipway BJ, Slawinska J, Wang S, Wyszogrodzki A (2011) Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J Adv Model Earth Syst.  https://doi.org/10.1029/2011MS000056
  96. Vial J, Dufresne JL, Bony S (2013) On the interpretation of inter-model spread in cmip5 climate sensitivity estimates. Clim Dyn 41(11):3339–3362.  https://doi.org/10.1007/s00382-013-1725-9
  97. Vial J, Bony S, Dufresne JL, Roehrig R (2016) Coupling between lower-tropospheric convective mixing and low-level clouds: physical mechanisms and dependence on convection scheme. J Adv Model Earth Syst.  https://doi.org/10.1002/2016MS000740
  98. Vial J, Bony S, Stevens B, Vogel R (2017) Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: a review. Surv Geophys.  https://doi.org/10.1007/s10712-017-9418-2
  99. Vogel R, Nuijens L, Stevens B (2016) The role of precipitation and spatial organization in the response of trade-wind clouds to warming. J Adv Model Earth Syst 8(2):843–862.  https://doi.org/10.1002/2015MS000568
  100. Wang J, Carton JA (2003) Modeling climate variability in the tropical Atlantic atmosphere. J Clim 16(23):3858–3876.  https://doi.org/10.1175/1520-0442(2003)016<3858:MCVITT>2.0.CO;2
  101. Wang JJ, Young K, Hock T, Lauritsen D, Behringer D, Black M, Black PG, Franklin J, Halverson J, Molinari J, Nguyen L, Reale T, Smith J, Sun B, Wang Q, Zhang JA (2015) A long-term, high-quality, high-vertical-resolution gps dropsonde dataset for hurricane and other studies. Bull Am Meteorol Soc 96(6):961–973.  https://doi.org/10.1175/BAMS-D-13-00203.1
  102. Webb M, Senior C, Sexton D, Ingram W, Williams K, Ringer M, McAvaney B, Colman R, Soden B, Gudgel R et al (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27(1):17–38Google Scholar
  103. Webb MJ, Lock AP, Bretherton CS, Bony S, Cole JNS, Idelkadi A, Kang SM, Koshiro T, Kawai H, Ogura T, Roehrig R, Shin Y, Mauritsen T, Sherwood SC, Vial J, Watanabe M, Woelfle MD, Zhao M (2015) The impact of parametrized convection on cloud feedback. Philos Trans R Soc Lond A Math Phys Eng Sci.  https://doi.org/10.1098/rsta.2014.0414
  104. Wendisch M, Brenguier JL (2013) Airborne measurements for environmental research: methods and instruments. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  https://doi.org/10.1002/9783527653218
  105. Wendisch M, Müller D, Schell D, Heintzenberg J (2001) An airborne spectral albedometer with active horizontal stabilization. J Atmos OceanTechnol 18(11):1856–1866.  https://doi.org/10.1175/1520-0426(2001)018<1856:AASAWA>2.0.CO;2
  106. Wendisch M, Pöschl U, Andreae MO, Machado LAT, Albrecht R, Schlager H, Rosenfeld D, Martin ST, Abdelmonem A, Afchine A, Araùjo AC, Artaxo P, Aufmhoff H, Barbosa HMJ, Borrmann S, Braga R, Buchholz B, Cecchini MA, Costa A, Curtius J, Dollner M, Dorf M, Dreiling V, Ebert V, Ehrlich A, Ewald F, Fisch G, Fix A, Frank F, Fütterer D, Heckl C, Heidelberg F, Hüneke T, Jäkel E, Järvinen E, Jurkat T, Kanter S, Kästner U, Kenntner M, Kesselmeier J, Klimach T, Knecht M, Kohl R, Kölling T, Krämer M, Krüger M, Krisna TC, Lavric JV, Longo K, Mahnke C, Manzi AO, Mayer B, Mertes S, Minikin A, Molleker S, Mnch S, Nillius B, Pfeilsticker K, Pöhlker C, Roiger A, Rose D, Rosenow D, Sauer D, Schnaiter M, Schneider J, Schulz C, de Souza RAF, Spanu A, Stock P, Vila D, Voigt C, Walser A, Walter D, Weigel R, Weinzierl B, Werner F, Yamasoe MA, Ziereis H, Zinner T, Zöger M (2016) Acridicon-chuva campaign: Studying tropical deep convective clouds and precipitation over amazonia using the new german research aircraft halo. Bull Am Meteorol Soc 97(10):1885–1908.  https://doi.org/10.1175/BAMS-D-14-00255.1
  107. Wentz FJ, Spencer RW (1998) SSM/I rain retrievals within a unified all-weather ocean algorithm. J Atmos Sci 55(9):1613–1627.  https://doi.org/10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2
  108. Winker DM, Pelon J, McCormick MP (2003) The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc SPIE 4893:1–11Google Scholar
  109. Wirth M, Fix A, Mahnke P, Schwarzer H, Schrandt F, Ehret G (2009) The airborne multi-wavelength water vapor differential absorption lidar wales: system design and performance. Appl Phys B 96(1):201.  https://doi.org/10.1007/s00340-009-3365-7
  110. Wood R, Köhler M, Bennartz R, O’Dell C (2009) The diurnal cycle of surface divergence over the global oceans. Q J R Meteorol Soc 135(643):1484–1493.  https://doi.org/10.1002/qj.451
  111. Yanai M, Esbensen S, Chu JH (1973) Determination of bulk properties of tropical cloud clusters from largescale heat and moisture budgets. J Atmos Sci 30(4):611–627.  https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2:
  112. Zhang M, Bretherton C (2008) Mechanisms of low cloud-climate feedback in idealized single-column simulations with the community atmospheric model, version 3 (cam3). J Clim 21(18):4859–4878.  https://doi.org/10.1175/2008JCLI2237.1
  113. Zhang M, Bretherton CS, Blossey PN, Austin PH, Bacmeister JT, Bony S, Brient F, Cheedela SK, Cheng A, Genio AD, Roode SR, Endo S, Franklin CN, Golaz JC, Hannay C, Heus T, Isotta FA, Dufresne JL, Kang IS, Kawai H, Köhler M, Larson VE, Liu Y, Lock AP, Lohmann U, Khairoutdinov MF, Molod AM, Neggers RAJ, Rasch P, Sandu I, Senkbeil R, Siebesma AP, Siegenthaler-Le Drian C, Stevens B, Suarez MJ, Xu KM, Salzen K, Webb MJ, Wolf A, Zhao M (2013a) CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. J Adv Model Earth Syst 5:826–842.  https://doi.org/10.1002/2013MS000246
  114. Zhang Z, Zhang Y, Wang W, Huang RX (2013b) Universal structure of mesoscale eddies in the ocean. Geophys Res Lett 40(14):3677–3681.  https://doi.org/10.1002/grl.50736
  115. Zhao G, Di Girolamo L (2007) Statistics on the macrophysical properties of trade wind cumuli over the tropical western Atlantic. J Geophys Res 112(D10):d10204.  https://doi.org/10.1029/2006JD007371
  116. Zinner T, Mayer B, Schröder M (2006) Determination of three-dimensional cloud structures from highresolution radiance data. J Geophys Res Atmos 111(D8):d08204.  https://doi.org/10.1029/2005JD006062

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sandrine Bony
    • 1
    Email author
  • Bjorn Stevens
    • 2
  • Felix Ament
    • 4
  • Sebastien Bigorre
    • 5
  • Patrick Chazette
    • 3
  • Susanne Crewell
    • 6
  • Julien Delanoë
    • 7
  • Kerry Emanuel
    • 8
  • David Farrell
    • 9
  • Cyrille Flamant
    • 7
  • Silke Gross
    • 10
  • Lutz Hirsch
    • 2
  • Johannes Karstensen
    • 11
  • Bernhard Mayer
    • 12
  • Louise Nuijens
    • 13
  • James H. RuppertJr.
    • 2
  • Irina Sandu
    • 14
  • Pier Siebesma
    • 16
  • Sabrina Speich
    • 15
  • Frédéric Szczap
    • 17
  • Julien Totems
    • 3
  • Raphaela Vogel
    • 2
  • Manfred Wendisch
    • 18
  • Martin Wirth
    • 10
  1. 1.LMD/IPSL, CNRSSorbonne Université, UPMCParisFrance
  2. 2.Max Planck Institute for MeteorologyHamburgGermany
  3. 3.LSCE/IPSL, CNRS-CEA-UVSQCEA SaclayGif sur YvetteFrance
  4. 4.University of HamburgHamburgGermany
  5. 5.Woods Hole Oceanographic InstitutionWoods HoleUSA
  6. 6.University of CologneCologneGermany
  7. 7.LATMOS/IPSL, CNRS-UPMC-UVSQGuyancourtFrance
  8. 8.Massachusetts Institute of TechnologyCambridgeUSA
  9. 9.Caribbean Institute for Meteorology and HydrologyBridgetownBarbados
  10. 10.German Aerospace CenterOberpfaffenhofen-WesslingGermany
  11. 11.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
  12. 12.Ludwig-Maximilians University of MunichMunichGermany
  13. 13.Delft University of TechnologyDelftThe Netherlands
  14. 14.ECMWFReadingUK
  15. 15.LMD/IPSLEcole Normale SupérieureParisFrance
  16. 16.Delft University of Technology and Royal Netherlands Meteorological InstituteDe BiltNetherlands
  17. 17.Laboratoire de Météorologie Physique, UMR6016, CNRSAubièreFrance
  18. 18.University of LeipzigLeipzigGermany

Personalised recommendations