Advertisement

Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

  • Amin R. Nehrir
  • Christoph Kiemle
  • Mathew D. Lebsock
  • Gottfried Kirchengast
  • Stefan A. Buehler
  • Ulrich Löhnert
  • Cong-Liang Liu
  • Peter C. Hargrave
  • Maria Barrera-Verdejo
  • David M. Winker
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 65)

Abstract

A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

Keywords

Remote sensing Water vapor profiles Atmospheric science Lidar Differential absorption lidar Radar Differential absorption radar Microwave occultation Hyperspectral microwave Emerging technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This paper arises from the International Space Science Institute (ISSI) Workshop on ‘‘Shallow clouds and water vapor, circulation and climate sensitivity.’’ The coauthors wish to acknowledge Lukas Kluft for his performance simulations of the hyperspectral microwave measurement approach, as well as Richard Ferrare and Susan Kooi for their contributions to the LASE data processing. Stefan Buehler was supported in part by the Cluster of Excellence ‘‘CliSAP’’ (EXC177), University of Hamburg, funded through the German Science Foundation (DFG). He also received support from the HD(CP)2 project (Fkz. 01LK1505D; Fkz. 01LK1502B), funded by the German Federal Ministry of Education and Research (BMBF) as ‘‘Forschung fu¨ r Nachhaltige Entwicklung’’ (FONA). The lidar synergies work presented by Maria Barrera Verdejo and Ulrich Lo¨hnert has been supported by High Definition Clouds and Precipitation for advancing Climate Prediction HD(CP)2 (FKZ 01LK1209A, 01LK1502E) funded by the German Ministry for Education and Research. The DAR related activities were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The HALO program is supported by the National Aeronautics and Space Administration Earth Science Technology Office and Earth Science Division. The work at the Wegener Center has been supported by the European Space Agency (ESA) and the Aeronautics and Space Agency of the Austrian Research Promotion Agency (FFG-ALR). Cong-Liang Liu’s work was supported by the Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (NSFC). We thank the two anonymous reviewers for helpful comments and suggestions and also the UK Science and Technologies Facilities Council, under grant reference number ST/N000706/1, for providing support to enable open access to this article.

References

  1. Albert M, Puffenburger K, Schum T, Fitzpatrick F, Litvinovitch S, Jones D, Rudd J, Hovis F (2015) UV lifetime laser demonstrator for space-based applications. Proc SPIE 9612, Lidar remote sensing for environmental monitoring XV.  https://doi.org/10.1117/12.2191188
  2. Anderson GP, Clough SA, Kneizys FX, Chetwynd JH, Shettle EP (1986) AFGL atmospheric constituent profiles (0–120 km), AFGL, TR-86-0110Google Scholar
  3. Anthes RA (2011) Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103.  https://doi.org/10.5194/amt-4-1077-2011
  4. Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF et al (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Atmos Metorol Soc 89:313–333.  https://doi.org/10.1175/bams-89-3-313
  5. August T, Klaes D, Schlussel P, Hultberg T, Crapeau M, Arriaga A, O’Carroll A, Coppens D, Munro R, Calbet X (2012) IASI on Metop-A: operational level 2 retrievals after five years in orbit. J Quant Spectroscopy Rad Trans Iss 113:1340–1371Google Scholar
  6. Barrera-Verdejo M, Crewell S, Lo¨hnert U, Orlandi E, Di Girolamo P (2016) Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling. Atmos Meas Tech 9:4013–4028.  https://doi.org/10.5194/amt-9-4013-2016
  7. Baselmans J et al (2008) Noise and sensitivity of aluminum kinetic inductance detectors for sub-mm astronomy. J Low Temp Phys 151(1–2):524–529Google Scholar
  8. Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feed-back uncertainties in climate models. Res Lett, Geophys.  https://doi.org/10.1029/2005gl023851
  9. Bony S, Stevens B, Ament F, Crewell S, Delanoe J, Farrell D et al (2017) EUREC4A: a field campaign to elucidate the couplings between clouds, convection and circulation. Surv Geophys.  https://doi.org/10.1007/s10712-017-9428-0
  10. Brocard B, Philipona R, Haefele A, Romanens G, Mueller A, Ruffieux D, Simeonov V, Calpini B (2013) Raman Lidar for meteorological observations, RALMO—Part 2: validation of water vapor measurements. Atm Meas Tech.  https://doi.org/10.1175/bams-d-14-00247.1
  11. Browell EV, Ismail S, Hall W, Moore A, Kooi S, Brackett V, Clayton M, Barrick J, Schmidlin F, Higdon N, Melfi S, Whiteman D (1997) LASE Validation Experiment. In: Ansmann A, Neuber R, Rairoux P, Wandinger U (eds) Advances in atmospheric remote sensing with lidar. Springer, Berlin, pp 289–295Google Scholar
  12. Browell EV, Ismail S, Grant WB (1998) Differential absorption lidar (DIAL) measurements from air and space. Appl Phys B 67:399–410Google Scholar
  13. Bruneau D, Quaglia P, Flamant C, Meissonnier M, Pelon J (2001) Airborne lidar LEANDRE II for watervapor profiling in the troposphere. I. System description. Appl Opt 40:3450–3461Google Scholar
  14. Buehler SA, Defer E, Evans F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimene´z C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski AJ (2012) Observing ice clouds in the submillimeter spectral range: the cloudice mission proposal for ESA’s earth explorer 8. Atmos Meas Tech 5:1529–1549.  https://doi.org/10.5194/amt-5-1529-2012
  15. Bueno J et al (2014) Anomalous response of superconducting titanium nitride resonators to terahertz radiation. Appl Phys Lett 105(19):192601Google Scholar
  16. Ceccaldi M, Delanoë J, Hogan RJ, Pounder NL, Protat A, Pelon J (2013) From CloudSat-CALIPSO to EarthCare: evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations. J Geophys Res Atmos 118:7962–7981.  https://doi.org/10.1002/jgrd.50579
  17. Crevoisier C, Clerbaux C, Guidard V, Phulpin T, Armante R, Barret B, Camy-Peyret C, Chaboureau, J-P, Coheur P-F, Crépeau L, Dufour G, Labonnote L, Lavanant L, Hadji-Lazaro J, Herbin H, Jacquinet-Husson N, Payan S, Péquignot E, Piérangelo C, Sellitto P, Stubenrauch, C (2014) Towards IASI-new generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables. Atmos Meas Tech 7:4367–4385.  https://doi.org/10.5194/amt-7-4367-2014
  18. Day PK et al (2003) A broadband superconducting detector suitable for use in large arrays. Nature 425(6960):817–821Google Scholar
  19. Di Girolamo P, Behrendt Andreas, Kiemle Christoph, Wulfmeyer Volker, Bauer Heinz, Summa Donato, Dörnbrack Andreas, Ehret Gerhard (2008) Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions. Remote Sens Environ 112(4):1552–1568.  https://doi.org/10.1016/j.rse.2007.08.008
  20. Doyle S et al (2008) Lumped element kinetic inductance detectors. J Low Temp Phys 151(1):530–536Google Scholar
  21. Ebell K, Orlandi E, Hünerbein A, Löhnert U, Crewell S (2013) Combining ground and satellite based measurements in the atmospheric state retrieval: assessment of the information content. J Geophys Res 18:6940–6956.  https://doi.org/10.1002/jgrd.50548
  22. Ebell K, Löhnert U, Päschke E, Orlandi E, Schween JH, Crewell S (2017) A 1-D variational retrieval of temperature, humidity, and liquid cloud properties: performance under idealized and real conditions. J Geophys Res Atmos 122:1746–1766.  https://doi.org/10.1002/2016jd025945
  23. Ehret G, Fix A, Weiss V, Poberaj G, Baumert T (1998) Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere. Appl Phys B 67:427–431Google Scholar
  24. Ehret G, Hoinka K, Stein J, Fix A, Kiemle C, Poberaj G (1999) Low stratospheric water vapor measured by an airborne DIAL. J Geophys Res 104:31351–31359Google Scholar
  25. Endo A et al (2012) Development of DESHIMA: a redshift machine based on a superconducting on-chip filterbank. In: SPIE astronomical telescopes + instrumentation. international society for optics and photonicsGoogle Scholar
  26. Ellis SM, Vivekanandan J (2010) Water vapor estimates using simultaneous dual-wavelength radar observations. Radio Sci.  https://doi.org/10.1029/2009rs004280
  27. Eriksson P, Buehler SA, Davis CP, Emde C, Lemke O (2011) ARTS, the atmospheric radiative transfer simulator, version 2. J Quant Spectrosc Radiat Transfer 112(10):1551–1558.  https://doi.org/10.1016/j.jqsrt.2011. 03.001
  28. ESA (2001) The five candidate earth explorer core missions—WALES—WAter Vapour Lidar Experiment in Space. ESA SP-1257(2). ESA Publication Division, NooredwijkGoogle Scholar
  29. ESA (2004) ACE +: atmosphere and climate explorer, 4th report of reports for mission selection–the six candidate earth explorer missions. ESA SP-1279(4) 60 pp and Technical & Programmatic Annex 39 pp, ESA Publ Div, NoordwijkGoogle Scholar
  30. Ferrare R, Browell E, Ismail S, Kooi S, Brasseur L, Brackett V, Clayton M, Barrick J, Linné H, Lammert A, Diskin G, Goldsmith J, Lesht B, Podolske J, Sachse G, Schmidlin FJ, Turner D, Whiteman D, Tobin D, Revercomb H, Demoz B, Girolamo P (2004) Characterization of upper troposphere water vapor measurements during AFWEX using LASE. J Atmos Oceanic Tech 21:1790–1808Google Scholar
  31. Frankenberg C, Wunch D, Toon G, Risi C, Scheepmaker R, Lee J-E, Wennberg P, Worden J (2013) 2013: water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra. Atmos Meas Tech 6:263–274Google Scholar
  32. Galewsky J, Steen-Larsen HC, Field RD, Worden J, Risi C, Schneider M (2016) Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev Geophys 54:809–865Google Scholar
  33. Gerard E, Tan DGH, Garand L, Wulfmeyer V, Ehret G, Di Girolamo P (2004) Major advances foreseen in humidity profiling from WALES. Bull Am Meteor Soc 85:237–251Google Scholar
  34. Gorbunov ME, Kirchengast G (2007) Fluctuations of radio occultation signals in X/K band in the presence of anisotropic turbulence and differential transmission retrieval performance. Radio Sci.  https://doi.org/10.1029/2006rs003544
  35. Griffin M et al (2008) Herschel-SPIRE: design, ground test results, and predicted performance. In: Society of photo-optical instrumentation engineers (SPIE) conference SeriesGoogle Scholar
  36. Griffin M et al (2015) SPACEKIDS: kinetic inductance detector arrays for space applications. In: 40th international conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). 2015. IEEEGoogle Scholar
  37. Groß S, Wirth M, Schäfler A, Fix A, Kaufmann S, Voigt C (2014) Potential of airborne lidar measurements for cirrus cloud studies. Atmos Meas Tech 7:2745–2755.  https://doi.org/10.5194/amt-7-2745
  38. Hartmann DL, Larson K (2002) An important constraint on cloud-climate feedback. Res Lett, Geophys.  https://doi.org/10.1029/2002gl015835
  39. Heinze R, Dipankar A, Henken CC, Moseley C, Sourdeval O, Trömel S, Xie X, Adamidis P, Ament F, Baars H, Barthlott C, Behrendt A, Blahak U, Bley S, Brdar S, Brueck M, Crewell S, Deneke H, Di Girolamo P, Evaristo R, Fischer J, Frank C, Friederichs P, Göcke T, Gorges K, Hande L, Hanke M, Hansen A, Hege H-C, Hoose C, Jahns T, Kalthoff N, Klocke D, Kneifel S, Knippertz P, Kuhn A, van Laar T, Macke A, Maurer V, Mayer B, Meyer CI, Muppa SK, Neggers RAJ, Orlandi E, Pantillon F, Pospichal B, Röber N, Scheck L, Seifert A, Seifert P, Senf F, Siligam P, Simmer C, Steinke S, Stevens B, Wapler K, Weniger M, Wulfmeyer V, Zängl G, Zhang D, Quaas J (2017) Large-eddy simulations over Germany using ICON: a comprehensive evaluation. QJR Meteorol Soc 143:69–100.  https://doi.org/10.1002/qj.2947
  40. Higdon NS, Browell E, Ponsardin P, Grossmann B, Butler C, Chyba T, Mayo M, Allen R, Heuser A, Grant W, Ismail S, Mayor S, Carter A (1994) Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. Appl Opt 33:6422–6438Google Scholar
  41. Ho S-P, Peng L, Anthes RA, Kuo Y-H, Lin H-C (2015) Marine boundary layer heights and their longitudinal, diurnal, and interseasonal variability in the southeastern Pacific using COSMIC, CALIOP, and radiosonde data. J Climate 28:2856–2872.  https://doi.org/10.1175/jcli-d-14-00238.1
  42. Holloway C, Neelin J (2009) Moisture vertical structure, column water vapor, and tropical deep convection. J Atmos Sci 66:1665–1683.  https://doi.org/10.1175/2008jas2806.1
  43. Illingworth AJ, Hogan RJ, O’Connor EJ, Bouniol D, Brooks ME, Delanoe J, Donovan DP, Eastment JD, Gaussiat N, Goddard JWF, Haeffelin M, Klein Baltink H, Krasnov OA, Pelon J, Piriou J-M, Protat A, Russchenberg HWJ, Seifert A, Tompkins AM, van Zadelhoff G-J, Vinit F, Willen U, Wilson DR, Wrench CL (2007) Cloudnet–continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull Am Meteorol Soc 88:883–898.  https://doi.org/10.1175/bams-88-6-883
  44. Ismail S, Browell E (1989) Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis. Appl Opt 28:3603–3614Google Scholar
  45. James RP, Markowski PM (2010) A numerical investigation of the effects of dry air aloft on deep convection. Mon Wea Rev 138:140–161.  https://doi.org/10.1175/2009mwr3018.1
  46. Jiménez C, Buehler SA, Rydberg B, Eriksson P, Evans KF (2007) Performance simulations for a submillimetre wave cloud ice satellite instrument. Q J R Meteorol Soc 133(S2):129–149.  https://doi.org/10.1002/qj.134
  47. John VO, Buehler SA (2004) The impact of ozone lines on AMSU-B radiances. Geophys Res Lett 31:L21108.  https://doi.org/10.1029/2004gl021214
  48. John VO, Holl G, Allan RP, Buehler SA, Parker DE, Soden BJ (2011) Clear-sky biases in satellite infrared estimates of upper tropospheric humidity and its trends. J Geophys Res 116:D14108.  https://doi.org/10.1029/2010jd015355
  49. Kiemle C, Wirth M, Fix A, Ehret G, Schumann U, Gardiner T, Schiller C, Sitnikov N, Stiller G (2008) First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and inter comparisons with other instruments. Atmos Chem Phys 8:5245–5261Google Scholar
  50. Kiemle C, Wirth M, Fix A, Rahm S, Corsmeier U, Di Girolamo P (2011) Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars. Q J R Meteorol Soc 137:190–203.  https://doi.org/10.1002/qj.757
  51. Kiemle C, Ehret G, Kawa SR, Browell EV (2015) The global distribution of cloud gaps in CALIPSO data. J Quant Spectrosc Radiat Transf 153–101:95–101.  https://doi.org/10.1016/j.jqsrt.2014.12.001
  52. Kiemle C, Groß S, Wirth M, Bugliaro L (2017) Airborne lidar observations of water vapor variability in tropical shallow convective environment. Surv Geophys.  https://doi.org/10.1007/s10712-017-9431-5
  53. Kirchengast G, Hoeg P (2004) The ACE + mission: an atmosphere and climate explorer based on GPS, GALILEO, and LEO-LEO radio occultation. In: Kirchengast G, Foelsche U, Steiner AK (eds) Occultations for probing atmosphere and climate. Springer, Berlin, pp 201–220.  https://doi.org/10.1007/978-3-662-09041-1_19
  54. Kirchengast G, Schweitzer S (2011) Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space. Geophys Res Lett 38:L13701.  https://doi.org/10.1029/2011gl047617
  55. Knuteson, R.O., et al., 2004: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 1763-1776/Google Scholar
  56. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465Google Scholar
  57. Kursinski ER, Syndergaard S, Flittner D, Feng D, Hajj G, Herman B, Ward D, Yunck T (2002) A microwave occultation observing system optimized to characterize atmospheric water, temperature, and geopotential via absorption. J Atmos Oceanic Tech 19:1897–1914.  https://doi.org/10.1175/1520-0426(2002)019<1897:Amooso>2.0.Co;2
  58. Kursinski ER, Ward D, Otarola A, Frehlich R, Groppi C, Albanna S, Shein M, Bertiger W, Pickett H, Ross M (2009) The active temperature, ozone and moisture microwave spectrometer (ATOMMS). In: Steiner AK, Pirscher B, Foelsche U, Kirchengast G (eds) New Horizons in Occultation Research: Studies in Atmosphere and Climate. Springer, Berlin, pp 295–313.  https://doi.org/10.1007/978-3-642-00321-9_24
  59. Kursinski ER, Ward D, Stovern M, Otarola AC, Young A, Wheelwright B, Stickney R, Albanna S, Duffy B, Groppi C, Hainsworth J (2012) Development and testing of the active temperature, ozone and moisture microwave spectrometer (ATOMMS) cm and mm wavelength occultation instrument. Atmos Meas Tech 5:439–456.  https://doi.org/10.5194/amt-5-439-2012
  60. Kursinski ER, Ward D, Otarola AC, McGhee J, Stovern M, Sammler K, Reed H, Erickson D, McCormick C, Griggs E (2016) Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate. In: Proceeding of the SPIE 9881 earth observing missions and sensors: development, implementation, and characterization IV, 98810Z.  https://doi.org/10.1117/12.2224038
  61. Lacour J-L, Risi C, Clarisse L, Bony S, Hurtmans D, Clerbaux C, Coheur P-F (2012) Mid-tropospheric deltaD observations from IASI/MetOp at high spatial and temporal resolution. Atmos Chem Phys 12:10817–10832Google Scholar
  62. Lawrence R, Lin B, Harrah S, Hu Y, Hunt P, Lipp C (2011) Initial flight test results of differential absorption barometric radar for remote sensing of sea surface air pressure. J Quant Spectrosc Radiat Transf 112:247–253.  https://doi.org/10.1016/j.jqsrt.2010.06.001
  63. Lebsock MD, Suzuki K, Milla´n LF, Kalmus PM (2015) The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique. Atmos Meas Tech 8:3631–3645.  https://doi.org/10.5194/amt-8-3631-2015
  64. Lin B, Hu Y (2005) Numerical simulations of radar surface air pressure measurements at O2 bands. IEEE Geosci Remote Sens Lett 2:324–328.  https://doi.org/10.1109/lgrs.2005.848515
  65. Liu C-L, Kirchengast G, Syndergaard GS, Kursinski ER, Sun YQ, Bai W-H, Du Q-F (2017) A review of low Earth orbit occultation using microwave and infrared-laser signals for monitoring the atmosphere and climate. Adv Space Res.  https://doi.org/10.1016/j.asr.2017.05.011
  66. Löhnert U, Schween JH, Acquistapace C, Ebell K, Maahn M, Barrera-Verdejo M, Hirsikko A, Bohn B, Knaps A, O’Connor E, Simmer C, Wahner A, Crewell S (2015) JOYCE: jülich observatory for cloud evolution. Bull Am Meteor Soc 96:1157–1174.  https://doi.org/10.1175/bams-d-14-00105.1
  67. Macke A et al (2017) The HD(CP)2 Observational prototype experiment hope—an overview. Atmos Chem Phys 17:4887–4914.  https://doi.org/10.5194/acp-17-4887-2017
  68. Mapes B, Chandra AS, Kuang Z, Zuidema P (2017) Importance profiles for water vapor. Submitted to Surveys in GeophysicsGoogle Scholar
  69. Mauritsen T, Stevens B (2015) Missing iris effect as a possible cause of muted hydrogical change and high climate sensitivity in models. Nat Geosci.  https://doi.org/10.1038/ngeo2414
  70. Mauskopf P et al (2014) Photon-noise limited performance in aluminum LEKIDs. J Low Temp Phys 176(3–4):545–552Google Scholar
  71. Meneghini R, Liao L, Tian L (2005) A feasibility study for simultaneous estimates of water vapor and precipitation parameters using a three-frequency radar. J Appl Meteorol 44:1511–1525.  https://doi.org/10.1175/jam2302.1
  72. Millan L, Lebsock M, Livesey N, Tanelli S (2016) Differential absorption radar techniques: water vapor retrievals. Atmos MeasTech Discuss.  https://doi.org/10.5194/amt-2016-72
  73. Millán L, Lebsock M, Livesey N, Tanelli S, Stephens G (2014) Differential absorption radar techniques –Part 1: surface pressure. Atmos Meas Tech Discuss 7:5795–5827.  https://doi.org/10.5194/amtd-7-5795-2014
  74. Moore AS et al (1997) Development of the lidar atmospheric sensing experiment (LASE)–an advanced airborne DIAL instrument, advances in atmospheric remote sensing with lidar. Springer, Berlin, pp 281–288Google Scholar
  75. Nehrir AR (2011a) Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (MP-DIAL) for atmospheric water-vapor and aerosol studies. Ph.D. thesis, Montana State UniversityGoogle Scholar
  76. Nehrir AR, Repasky KS, Carlsten JL (2011) Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere. J Atmos Oceanic Technol 28:131–147.  https://doi.org/10.1175/2010jtecha1452.1
  77. Nehrir AR, Repasky KS, Carlsten JL (2012) Micropulse water vapor differential absorption lidar: transmitter design and performance. Opt. Express 20:25137–25151.  https://doi.org/10.1364/oe.20.025137
  78. Nuijens L, Stevens B, Siebesma AP (2009) The environment of precipitating shallow cumulus convection. J Atmos Sci 66:1962–1979Google Scholar
  79. Nuijens L, Emanuel K, Masunaga H, L’Ecuyer T (2017) Implications of warm rain in shallow cumulus and congestus clouds for large-scale circulations. Submitted to Surveys in GeophysicsGoogle Scholar
  80. Perrin A, Puzzarini C, Colmont J-M, Verdes C, Wlodarczak G, Cazzoli G, Buehler S, Flaud J-M, Demaison J (2005) Molecular line parameters for the MASTER (millimeter wave acquisitions for stratosphere/troposphere exchange research) database. J Atmos Chem 50(2):161–205.  https://doi.org/10.1007/s10874-005-7185-9
  81. Petters JL, Jiang H, Feingold G et al (2013) A comparative study of the response of modeled nondrizzling stratocumulus to meteorological and aerosol perturbations. Atmos Chem Phys 13:2507–2529.  https://doi.org/10.5194/acp-13-2507-2013
  82. Pincus R, Beljaars A, Kirchengast G, Buehler S, Ladstaedter F (2017) The distribution of water vapor over low-latitude oceans: Current best estimates, errors, and impacts. Surv Geophys, in revision (status Aug 2017, to appear also in the ISSI-Shallow Clouds special issue)Google Scholar
  83. Poberaj G, Fix A, Assion A, Wirth M, Kiemle C, Ehret G (2002) Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy. Appl Phys B 75:165–172.  https://doi.org/10.1007/s00340-002-0965-x
  84. Rodgers CD (1990) Characterization and error analysis of profiles retrieved from remote sounding measurements. J Geophys Res 95(D5):5587–5595Google Scholar
  85. Schneider M, Hase F (2011) Optimal estimation of tropospheric H2O and δD with IASI/METOP. Atmos Chem Phys 11(21):11207–11220.  https://doi.org/10.5194/acp-11-11207-2011
  86. Schotland RM (1966) Proc fourth symp remote sens environ, 273 p. ERIM, Ann ArborGoogle Scholar
  87. Schotland RM (1974) Errors in the lidar measurement of atmospheric gases by differential absorption. J Appl Meteor 13:71–77.  https://doi.org/10.1175/1520-0450
  88. Schweitzer S, Kirchengast G, Schwaerz M, Fritzer J, Gorbunov M (2011) Thermodynamic state retrieval from microwave occultation data and performance analysis based on end-to-end simulations. J Geophys Res 116:D10301.  https://doi.org/10.1029/2010jd014850
  89. Seifert A, Heus T, Pincus R, Stevens B (2015) Large-eddy simulation of the transient and near equilibrium behavior of precipitating shallow convection. J Adv Mod Earth Sys 7:1918.  https://doi.org/10.1002/2015ms000489
  90. Sherwood SC, Bony S, Dufresne J-L (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505:37–42Google Scholar
  91. Shirokoff E et al (2014) Design and performance of superspec: an on-chip, kid-based, mm-wavelength spectrometer. J Low Temp Phys 176(5–6):657–662Google Scholar
  92. Spuler SM, Repasky KS, Morley B, Moen D, Hayman M, Nehrir AR (2015) Field-deployable diode-laserbased differential absorption lidar (DIAL) for profiling water vapor. Atmos Meas Tech 8:1073–1087.  https://doi.org/10.5194/amt-8-1073-2015
  93. Stein T, Delanoë J, Hogan R (2011) A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J Appl Meteor Climatol 50:1952–1969.  https://doi.org/10.1175/2011jamc2646.1
  94. Steiner AK, Lackner BC, Ladstädter F, Scherllin-Pirscher B, Foelsche U, Kirchengast G (2011) GPS radio occultation for climate monitoring and change detection. Radio Sci.  https://doi.org/10.1029/2010rs004614
  95. Stevens B, Bony S (2013) Water in the atmosphere. Phys Today 66(6):29.  https://doi.org/10.1063/pt.3.2009
  96. Stevens B et al (2016) The barbados cloud observatory-anchoring investigations of clouds and circulation on the edge of the ITCZ. Atmos Met Soc, Bull.  https://doi.org/10.1175/bams-d-14-00247.1
  97. Stevens B, Brogniez H, Kiemle C, Lacour J-L, Crevoiser C, Killiani J (2017) Structure and dynamical influence of water vapor in the lower troposphere. Surv Geophys.  https://doi.org/10.1007/s10712-017-9420-8
  98. Tian L, Heymsfield GM, Li L, Srivastava RC (2007) Properties of light stratiform rain derived from 10- and 94-GHz airborne Doppler radars measurements. J Geophys Res 112.  https://doi.org/10.1029/2006jd008144. http://doi.wiley.com/10.1029/2006JD008144
  99. Turner DD, Löhnert U (2014) Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based atmospheric emitted radiance interferometer (AERI). J Appl Meteor Climatol 53:752–771.  https://doi.org/10.1175/jamc-d-13-0126.1
  100. Turner DD, Goldmsith J, Ferrare RA (2016) Development and applications of the ARM Raman Lidar. Meteorol Monogr 57:18.1–18.5.  https://doi.org/10.1175/amsmonographs-d-15-0026.1
  101. Verdes CL, Buehler SA, Perrin A, Flaud J-M, Demaison J, Wlodarczak G, Colmont J-M, Cazzoli G, Puzzarini C (2005) A sensitivity study on spectroscopic parameter accuracies for a mm/sub-mm limbsounder instrument. J Mol Spectro 229(2):266–275.  https://doi.org/10.1016/j.jms.2004.09.014
  102. Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn.  https://doi.org/10.1007/s00382-013-1725-9
  103. Wang L, Han Y, Jin X, Chen Y, Tremblay DA (2015) Radiometric consistency assessment of hyperspectral infrared sounders. Atmos Meas Tech 8:4831–4844.  https://doi.org/10.5194/amt-8-4831-2015
  104. Weckwerth T, Weber K, Turner D, Spuler S (2016) Validation of a water vapor micropulse differential absorption lidar (DIAL). J Atmos Oceanic Technol 33:2353–2372.  https://doi.org/10.1175/jtech-d-16-0119.1
  105. Westwater ER (1997) Remote sensing of tropospheric temperature and water vapor by integrated observing systems. Bull Am Meteor Soc 78:1991–2006Google Scholar
  106. Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan T, Melbourne W, Hocke K (2001) Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28:3263–3266.  https://doi.org/10.1029/2001gl013117
  107. Wing AA, Emanuel KA (2014) Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. JAMES 6:47–59.  https://doi.org/10.1002/2013ms000269
  108. Wing AA, Emanuel K, Holloway CE, Muller C (2017) Convective self-aggregation in numerical simulations: a review. Surv Geophys.  https://doi.org/10.1007/s10712-017-9408-4
  109. Wirth M, Fix A, Mahnke P, Schwarzer H, Schrandt F, Ehret G (2009) The airborne multi-wavelength H2Odial wales: system design and performance. Appl Phys B 96:201–213Google Scholar
  110. Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–532Google Scholar
  111. Wulfmeyer V, Hardesty RM, Turner DD, Behrendt A, Cadeddu MP, Di Girolamo P, Schlüssel P, Van Baelen J, Zus F (2015) A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev Geophys 53:819–895.  https://doi.org/10.1002/2014rg000476
  112. Zeng et al (2015) Workshop report on scientific challenges and opportunities in the NASA weather focus areaGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Amin R. Nehrir
    • 1
  • Christoph Kiemle
    • 2
  • Mathew D. Lebsock
    • 3
  • Gottfried Kirchengast
    • 4
  • Stefan A. Buehler
    • 5
  • Ulrich Löhnert
    • 6
  • Cong-Liang Liu
    • 7
  • Peter C. Hargrave
    • 8
  • Maria Barrera-Verdejo
    • 9
  • David M. Winker
    • 1
  1. 1.NASA Langley Research CenterHamptonUSA
  2. 2.DLR, Institut für Physik der AtmosphäreOberpfaffenhofenGermany
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and Meteorology/Institute of PhysicsUniversity of GrazGrazAustria
  5. 5.Center for Earth System Research and Sustainability (CEN), Meteorological InstituteUniversität HamburgHamburgGermany
  6. 6.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany
  7. 7.National Space Science Center (NSSC)Chinese Academy of SciencesBeijingChina
  8. 8.School of Physics & AstronomyCardiff UniversityCardiffUK
  9. 9.Forschungszentrum JülichJülichGermany

Personalised recommendations