The Representation of Tropospheric Water Vapor Over Low-Latitude Oceans in (Re-)analysis: Errors, Impacts, and the Ability to Exploit Current and Prospective Observations

  • Robert PincusEmail author
  • Anton Beljaars
  • Stefan A. Buehler
  • Gottfried Kirchengast
  • Florian Ladstaedter
  • Jeffrey S. Whitaker
Part of the Space Sciences Series of ISSI book series (SSSI, volume 65)


This paper addresses the representation of lower tropospheric water vapor in the meteorological analyses—fully detailed estimates of atmospheric state—providing the wide temporal and spatial coverage used in many process studies. Analyses are produced in a cycle combining short forecasts from initial conditions with data assimilation that optimally estimates the state of the atmosphere from the previous forecasts and new observations, providing initial conditions for the next set of forecasts. Estimates of water vapor are among the less certain aspects of the state because the quantity poses special challenges for data assimilation while being particularly sensitive to the details of model parameterizations. Over remote tropical oceans observations of water vapor come from two sources: passive observations at microwave or infrared wavelengths that provide relatively strong constraints over large areas on column-integrated moisture but relatively coarse vertical resolution, and occultations of Global Positioning System provide much higher accuracy and vertical resolution but are relatively spatially coarse. Over low-latitude oceans, experiences with two systems suggest that current analyses reproduce much of the large-scale variability in integrated water vapor but have systematic errors in the representation of the boundary layer with compensating errors in the free troposphere; these errors introduce errors of order 10% in radiative heating rates through the free troposphere. New observations, such as might be obtained by future observing systems, improve the estimates of water vapor but this improvement is lost relatively quickly, suggesting that exploiting better observations will require targeted improvements to global forecast models.


Water vapor Satellite Microwave Infrared Radio occultation Data assimilation Tropospheric water vapor profiling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This paper arises from the International Space Science Institute (ISSI) workshop on Shallow clouds and water vapor, circulation and climate sensitivity. We thank Oleksandr Bobryshev for preparing Fig. 1 and deriving scaling parameters and cloud thresholds in Sect. 3.1, Theresa Lang for preparing Fig. 2, and Lukas Kluft and Mareike Burba for IASI performance estimates. We thank the GRUAN project for tropical radiosonde data and M. Schwaerz and WGC’s Occultation Processing System team for provision of OPSv5.6 RO data. K. Franklin Evans provided the SOCRATES radiative transfer calculations in Sect. 4. R.P. was supported by the U.S. National Science Foundation under grant ATM-1138394. Contributions by G. K. and F. L were funded by the Austrian Research Promotion Agency (FFG) under the projects OPSCLIMTRACE-OPSCLIMVALUE and by the Austrian Science Fund (FWF) under the project VERTCLIM (P27724-NBL).


  1. Abdalla S, Isaksen L, Janssen P, Wedi N (2013) Effective spectral resolution of ECMWF atmospheric forecast models. ECMWF Newslett 137:19–22Google Scholar
  2. Andersson E, Bauer P, Beljaars A, Chevallier F et al (2005) Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull Am Meteorol Soc 86(3):387Google Scholar
  3. Anthes RA (2011) Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate, and space weather. Atmos Meas Tech 4(6):1077–1103Google Scholar
  4. August T, Klaes D, Schlüssel P, Hultberg T, Crapeau M, Arriaga A, O’Carroll A, Coppens D, Munro R, Calbet X (2012) IASI on Metop-A: operational Level 2 retrievals after five years in orbit. J Quant Spectrosc Radiat Transf 113(11):1340–1371Google Scholar
  5. Aumann HH, Chahine MT, Gautier C, Goldberg MD, Kalnay E, McMillin LM, Revercomb H, Rosenkranz PW, Smith WL, Staelin DH, Strow LL, Susskind J (2003) AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens 41(2):253–264Google Scholar
  6. Bauer P, Geer AJ, Lopez P, Salmond D (2010) Direct 4D-Var assimilation of all-sky radiances. Part I: implementation. Q J R Meteorol Soc 136(652):1868–1885Google Scholar
  7. Bodeker GE, Bojinski S, Cimini D, Dirksen RJ, Haeffelin M, Hannigan JW, Hurst DF, Leblanc T, Madonna F, Maturilli M, Mikalsen AC, Philipona R, Reale T, Seidel DJ, Tan DGH, Thorne PW, Vöel H, Wang J (2016) Reference upper-air observations for climate: from concept to reality. Bull Am Meteorol Soc 97(1):123–135Google Scholar
  8. Bretherton CS, Uttal T, Fairall CW, Yuter SE, Weller RA, Baumgardner D, Comstock K, Wood R, Raga GB (2004) The EPIC 2001 stratocumulus study. Bull Am Meteorol Soc 85(7):967–977Google Scholar
  9. Bretherton CS, Blossey PN, Khairoutdinov M (2005) An energy-balance analysis of deep convective selfaggregation above uniform SST. J Atmos Sci 62(12):4273–4292Google Scholar
  10. Brogniez H, Kirstetter PE, Eymard L (2013) Expected improvements in the atmospheric humidity profile retrieval using the Megha-Tropiques microwave payload. Q J R Meteorol Soc 139(673):842–851Google Scholar
  11. Buehler SA, John VO (2005) A simple method to relate microwave radiances to upper tropospheric humidity. J Geophys Res 110(D2):D02,110Google Scholar
  12. Buehler SA, Kuvatov M, John VO, Leiterer U, Dier H (2004) Comparison of microwave satellite humidity data and radiosonde profiles: a case study. J Geophys Res 109:D13103.
  13. Clerbaux C, Boynard A, Clarisse L, George M, Hadji-Lazaro J, Herbin H, Hurtmans D, Pommier M, Razavi A, Turquety S, Wespes C, Coheur PF (2009) Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos Chem Phys 9(16):6041–6054Google Scholar
  14. Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135(644):1830–1841Google Scholar
  15. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597Google Scholar
  16. Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122(531):689–719Google Scholar
  17. Eriksson P, Buehler SA, Davis CP, Emde C, Lemke O (2011) ARTS, the atmospheric radiative transfer simulator, version 2. J Quant Spectrosc Radiat Transf 112(10):1551–1558Google Scholar
  18. Eyre JR, Kelly GA, McNally AP, Andersson E, Persson A (1993) Assimilation of TOVS radiance information through one-dimensional variational analysis. Q J R Meteorol Soc 119(514):1427–1463Google Scholar
  19. Geer AJ, Bauer P, Lopez P (2010) Direct 4D-Var assimilation of all-sky radiances. Part II: assessment. Q J R Meteorol Soc 136(652):1886–1905Google Scholar
  20. Gorbunov ME, Benzon H-H, Jensen AS, Lohmann MS, Nielsen AS (2004) Comparative analysis of radio occultation processing approaches based on Fourier integral operators. Radio Sci 39:RS6004.
  21. Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Solar Terr Phys 64(4):451–469Google Scholar
  22. Healy SB, Thepaut JN (2006) Assimilation experiments with CHAMP GPS radio occultation measurements. Q J R Meteorol Soc 132(615):605–623Google Scholar
  23. Herbin H, Hurtmans D, Clerbaux C, Clarisse L, Coheur PF (2009) H216 O and HDO measurements with IASI/MetOp. Atmos Chem Phys 9(24):9433–9447Google Scholar
  24. Ho SP, Hunt D, Steiner AK, Mannucci AJ, Kirchengast G, Gleisner H, Heise S, von Engeln A, Marquardt C, Sokolovskiy S, Schreiner W, Scherllin-Pirscher B, Ao C, Wickert J, Syndergaard S, Lauritsen K, Leroy S, Kursinski ER, Kuo YH, Foelsche U, Schmidt T, Gorbunov M (2012) Reproducibility of GPS radio occultation data for climate monitoring: profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers. J Geophys Res 117:D18111.
  25. Ho SP, Peng L, Anthes RA, Kuo YH, Lin HC (2015) Marine boundary layer heights and their longitudinal, diurnal, and interseasonal variability in the southeastern pacific using COSMIC, CALIOP, and radiosonde data. J Climate 28(7):2856–2872Google Scholar
  26. Hólm E, Andersson E, Beljaars A, Lopez P, Mahfouf JF, Simmons A, Thepaut JN (2002) Assimilation and modelling of the hydrological cycle: ECWMF’s status and plans. Tech Memo 383:1–55Google Scholar
  27. Immler FJ, Dykema J, Gardiner T, Whiteman DN, Thorne PW, Vömel H (2010) Reference quality upper-air measurements: guidance for developing GRUAN data products. Atmos Meas Tech 3(5):1217–1231Google Scholar
  28. John VO, Holl G, Allan RP, Buehler SA, Parker DE, Soden BJ (2011) Clear-sky biases in satellite infrared estimates of upper tropospheric humidity and its trends. J Geophys Res 116(D14):1491Google Scholar
  29. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(Series D):35–45Google Scholar
  30. Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. Trans ASME J Basic Eng 83(Series D):95–108Google Scholar
  31. Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, CambridgeGoogle Scholar
  32. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643Google Scholar
  33. Kiemle C, Groß S, Wirth M, Bugliaro L (2017) Airborne lidar observations of water vapor variability in tropical shallow convective environment. Surv Geophys.
  34. Kirchengast G, Schweitzer S (2011) Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space. Geophys Res Lett 38(13):L13,701Google Scholar
  35. Klaes KD, Cohen M, Buhler Y, Schlüssel P, Munro R, Engeln A, Clérigh E, Bonekamp H, Ackermann J, Schmetz J, Luntama JP (2007) An introduction to the EUMETSAT polar system. Bull Am Meteorol Soc 88(7):1085–1096Google Scholar
  36. Klein SA, Hall A, Norris JR, Pincus R (2017) Low-cloud feedbacks from cloud-controlling factors: a review. Surv Geophys.
  37. Kleist DT, Ide K (2015) An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: system description and 3D-hybrid results. Mon Weather Rev 143(2):433–451Google Scholar
  38. Klinker E, Sardeshmukh PD (1992) The diagnosis of mechanical dissipation in the atmosphere from largescale balance requirements. J Atmos Sci 49(7):608–627Google Scholar
  39. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan 93(1):5–48Google Scholar
  40. Kursinski ER, Gebhardt T (2014) A method to deconvolve errors in GPS RO-derived water vapor histograms. J Atmos Ocean Technol 31(12):2606–2628Google Scholar
  41. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102(D19):23,429–23,465Google Scholar
  42. Kursinski ER, Syndergaard S, Flittner D, Feng D, Hajj GA, Herman B, Ward D, Yunck TP (2002) A microwave occultation observing system optimized to characterize atmospheric water, temperature, and geopotential via absorption. J Atmos Ocean Technol 19(12):1897–1914Google Scholar
  43. Lacour JL, Risi C, Clarisse L, Bony S, Hurtmans D, Clerbaux C, Coheur PF (2012) Mid-tropospheric dD observations from IASI/MetOp at high spatial and temporal resolution. Atmos Chem Phys 12(22):10,817–10,832Google Scholar
  44. Ladstädter F, Steiner AK, Schwärz M, Kirchengast G (2015) Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos Meas Tech 8(4):1819–1834Google Scholar
  45. Lebsock et al (this issue) An observational view of radiation-circulation feedbacks on convective aggregation. Surv Geophy (in press)Google Scholar
  46. Liao M, Zhang P, Yang GL, Bi YM, Liu Y, Bai WH, Meng XG, Du QF, Sun YQ (2016) Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C. Atmos Meas Tech 9(2):781–792Google Scholar
  47. Liu CL, Kirchengast G, Syndergaard S, Kursinski ER, Sun YQ, Bai WH, Du QF (2017) A review of low Earth orbit occultation using microwave and infrared-laser signals for monitoring the atmosphere and climate. Adv Space Res.
  48. Mapes B, Chandra AS, Kuang Z, Zuidema P (2017) Importance profiles for water vapor. Surv Geophys.
  49. Mears CA, Wang J, Smith D, Wentz FJ (2015) Intercomparison of total precipitable water measurements made by satellite-borne microwave radiometers and ground-based GPS instruments. J Geophys Res 120(6):2492–2504Google Scholar
  50. Nehrir AR, Kiemle C, Lebsock MD, Kirchengast G, Buehler SA, Löhnert U, Liu C-L, Hargrave P, Barrera-Verdejo M, Winker D (2017) Emerging technologies and synergies for airborne and space-based measurements of water vapor profiles. Surv Geophys.
  51. Osher S, Burger M, Goldfarb D, Xu J, Yin W (2005) An iterative regularization method for total variationbased image restoration. Multiscale Model Simul 4(2):460–489Google Scholar
  52. Parker WS (2016) Reanalyses and observations: what’s the difference? Bull Am Meteorol Soc 97(9):1565–1572Google Scholar
  53. Rieckh T, Anthes R, Randel W, Ho S-P, Foelsche U (2016) Tropospheric dry layers in the Tropical Western Pacific: Comparisons of GPS radio occultation with multiple data sets. Atmos Meas Tech 10:1093–1110.
  54. Rodwell MJ, Palmer TN (2007) Using numerical weather prediction to assess climate models. Quart J R Meterol Soc 133(622):129–146Google Scholar
  55. Schmetz J, Pili P, Tjemkes S, Just D, Kerkmann J, Rota S, Ratier A (2002) An introduction to meteosat second generation (MSG). Bull Am Meteorol Soc 83(7):977–992Google Scholar
  56. Schneider M, Hase F (2011) Optimal estimation of tropospheric H2O and δD with IASI/METOP. Atmos Chem Phys 11(21):11,207–11,220Google Scholar
  57. Schreiner WS, Rocken C, Sokolovskiy S, Hunt D (2009) Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing. GPS Solut 14(1):13–22Google Scholar
  58. Shi L, Bates JJ (2011) Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor. J Geophys Res 116(D4):D04,108Google Scholar
  59. Sokolovskiy S, Schreiner W, Zeng Z, Hunt D, Lin YC, Kuo YH (2014) Observation, analysis, and modeling of deep radio occultation signals: effects of tropospheric ducts and interfering signals. Radio Sci 49(10):954–970Google Scholar
  60. Steiner AK, Lackner BC, Ladstädter F, Scherllin-Pirscher B, Foelsche U, Kirchengast G (2011) GPS radio occultation for climate monitoring and change detection. Radio Sci 46(6):115Google Scholar
  61. Steiner AK, Hunt D, Ho SP, Kirchengast G, Mannucci AJ, Scherllin-Pirscher B, Gleisner H, von Engeln A, Schmidt T, Ao C, Leroy SS, Kursinski ER, Foelsche U, Gorbunov M, Heise S, Kuo YH, Lauritsen KB, Marquardt C, Rocken C, Schreiner W, Sokolovskiy S, Syndergaard S, Wickert J (2013) Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos Chem Phys 13(3):1469–1484Google Scholar
  62. Stevens B, Farrell D, Hirsch L, Jansen F, Nuijens L, Serikov I, Brügmann B, Forde M, Linne H, Lonitz K, Prospero JM (2016) The barbados cloud observatory: anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull Am Meteorol Soc 97(5):787–801Google Scholar
  63. Stevens B, Brogniez H, Kiemle C, Lacour JL, Crevoisier C, Kiliani J (2017) Structure and dynamical influence of water vapor in the lower tropical troposphere. Surv Geophys 105(3):270Google Scholar
  64. Tobin I, Bony S, Roca R (2012) Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. J Clim 25(20):6885–6904Google Scholar
  65. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24(18):4907–4924Google Scholar
  66. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold Vd, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012Google Scholar
  67. Vial J, Bony S, Stevens B, Vogel R (2017) Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: a review. Surv Geophys 36(1):73Google Scholar
  68. Wang X, Parrish D, Kleist D, Whitaker J (2013) GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: single-resolution experiments. Mon Weathr Rev 141(11):4098–4117Google Scholar
  69. Wing AA, Emanuel K, Holloway CE, Muller C (2017) Convective self-aggregation in numerical simulations: a review. Surv Geophys 27(32):4391Google Scholar
  70. Xie F, Wu DL, Ao CO, Mannucci AJ, Kursinski ER (2012) Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos Chem Phys 12(2):903–918Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Physical Sciences DivisionNOAA Earth System Research LabBoulderUSA
  3. 3.European Centre for Medium-Range Weather ForecastsReadingUK
  4. 4.Informatics and Natural Sciences Department of Earth Sciences, Meteorological Institute, Faculty of MathematicsUniversitt HamburgHamburgGermany
  5. 5.Wegener Center for Climate and Global Change and Institute for Geophysics, Astrophysics, and Meteorology, Institute of PhysicsUniversity of GrazGrazAustria

Personalised recommendations