Advertisement

Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere

  • Bjorn StevensEmail author
  • Hélène Brogniez
  • Christoph Kiemle
  • Jean-Lionel Lacour
  • Cyril Crevoisier
  • Johannes Kiliani
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 65)

Abstract

In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, z*, of the triple-point isotherm, T*. The measurements are evaluated in light of understanding of how lowertropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between T* and the temperature at which primary ice forms gives a ‘first-mover advantage’ to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near T* implies relative humidity reversals below z* which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.

Keywords

Water vapor Convection Atmospheric circulation Ice initiation Remote sensing Atmospheric measurements Clouds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Open access funding provided by Max Planck Society. This paper arises from the International Space Science Institute (ISSI) workshop on ‘‘Shallow clouds and water vapor, circulation and climate sensitivity’’. The NARVAL campaign was co-sponsored by the Max Planck Society, the Deutsche Forschungsgemeinschaft (German Science Foundation, project HALO-SPP 1294) and the DLR Institute of Atmospheric Physics. Jean-Lionel Lacour is grateful to the CNES for postdoctoral funding. P-E Kirstetter (NOAA NSSL) and C. Dufour (LATMOS) are acknowledged for their help on the SAPHIR data. The CNES and CNRS are gratefully acknowledged for the financial support to the scientific activity of the Megha-Tropiques mission. The ICARE group is also acknowledged for realizing the ground segment of the mission: The data are available at http://www.icare.univ-lille1.fr/mt. Brian E. Mapes and an anonymous reviewer are thanked for their constructive comments on an earlier version of this paper.

References

  1. Anthes RA (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Weather Rev 105(3):270–286Google Scholar
  2. Becker T, Stevens B, Hohenegger C (2017) Imprint of the convective parameterization and sea-surface temperature on large-scale convective self-aggregation. J Adv Model Earth Syst.  https://doi.org/10.1002/2016MS000865
  3. Bergemann M, Jakob C (2016) How important is tropospheric humidity for coastal rainfall in the tropics? Geophys Res Lett 43(11):5860–5868Google Scholar
  4. Bony S, Emanuel KA (2005) On the role of moist processes in tropical intraseasonal variability: cloud–radiation and moisture–convection feedbacks. J Atmos Sci 62(8):2770–2789Google Scholar
  5. Bony S, Stevens B, Coppin D, Becker T, Reed KA, Voigt A, Medeiros B (2016) Thermodynamic control of anvil cloud amount. Proc Natl Acad Sci 113(32):8927–8932Google Scholar
  6. Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Clim 17(7):1517–1528Google Scholar
  7. Brogniez H, Kirstetter PE, Eymard L (2013) Expected improvements in the atmospheric humidity profile retrieval using the Megha-Tropiques microwave payload. QJR Meteorol Soc 139:842–851.  https://doi.org/10.1002/qj.1869
  8. Brogniez H, Fallourd R, Mallet C, Sivira R, Dufour C (2016) Estimating confidence intervals around relative humidity profiles from satellite observations: application to the SAPHIR sounder. J Atmos Ocean Technol 33:1005–1022.  https://doi.org/10.1175/JTECH-D-15-0237.1
  9. Bronnenberg BJ, Dhar SK, Dubé J (2009) Brand history, geography, and the persistence of brand shares. J Polit Econ 117(1):87–115Google Scholar
  10. Capderou M (2009) Sampling. Comparison with other Meteorological Satellites. Tech. Rep, Mega Tropiques Technical Report, IPSLGoogle Scholar
  11. Chazette P, Marnas F, Totems J, Shang X (2014) Comparison of IASI water vapor retrieval with H2ORaman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs. Atmos Chem Phys 14(18):9583–9596Google Scholar
  12. Craig GC, Mack JM (2013) A coarsening model for self-organization of tropical convection. J Geophys Res Atmos 118(16):8761–8769Google Scholar
  13. Derbyshire SH, Beau I, Bechtold P, Grandpeix JY, Piriou JM, Redelsperger JL, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. QJR Meteorol Soc 130(604):3055–3079Google Scholar
  14. Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J Atmos Sci 43(6):585–605Google Scholar
  15. Eymard L, Gheudin M, Laborie P, Sirou F, Gac CL, Vinson JP, Franquet S, Desbois M, Roca R, Scott N, Waldteufel P (2002) The SAPHIR humidity sounder. MEGHA-TROPIQUES 2nd Scientific Workshop, 2–6 July 2001, Paris, FranceGoogle Scholar
  16. Galewsky J, Steen-Larsen HC, Field RD, Worden J, Risi C, Schneider M (2016) Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev Geophys 54(4):809–865Google Scholar
  17. González Y, Schneider M, Dyroff C, Rodríguez S, Christner E, García OE, Cuevas E, Bustos JJ, Ramos R, Guirado-Fuentes C, Barthlott S, Wiegele A, Sepúlveda E (2016) Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements. Atmos Chem Phys 16(7):4251–4269Google Scholar
  18. Greenwald T, Christopher S (2002) Effect of cold clouds on satellite measurements near 183 GHz. J Geophys Res Atmos.  https://doi.org/10.1029/2000JD000,258
  19. Holloway CE, Neelin JD (2009) Moisture vertical structure, column water vapor, and tropical deep convection. J Atmos Sci 66(6):1665–1683Google Scholar
  20. Hong G, Heygster G, Miao J, Kunzi K (2005) Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J Geophys Res Atmos.  https://doi.org/10.1029/2004JD004,949
  21. Johnson RH, Rickenbach M, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418Google Scholar
  22. Kiemle C, Groß S, Wirth M, Bugliaro L (2017) Airborne lidar observations of water vapor variability in tropical shallow convective environment. Surv Geophys (in press)Google Scholar
  23. Kuang Z, Bretherton CS (2006) A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J Atmos Sci 63(7):1895–1909Google Scholar
  24. Lacour JL, Risi C, Clarisse L, Bony S, Hurtmans D, Clerbaux C, Coheur PF (2012) Mid-tropospheric δD observations from IASI/MetOp at high spatial and temporal resolution. Atmos Chem Phys 12(22):10,817–10,832Google Scholar
  25. Lacour JL, Clarisse L, Worden J, Schneider M, Barthlott S, Hase F, Risi C, Clerbaux C, Hurtmans D, Coheur PF (2015) Cross-validation of IASI/MetOp derived tropospheric δD with TES and groundbased FTIR observations. Atmos Meas Tech 8(3):1447–1466Google Scholar
  26. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436Google Scholar
  27. Mapes BE, Zuidema P (1996) Radiative-dynamical consequences of dry tongues in the tropical troposphere. J Atmos Sci 53(4):620–638Google Scholar
  28. Möbis B, Stevens B (2012) Factors controlling the position of the Intertropical Convergence Zone on an aquaplanet. J Adv Model Earth Syst 4(4):1–16Google Scholar
  29. Muller CJ, Bony S (2015) What favors convective aggregation and why? Geophys Res Lett 42(13):5626–5634.  https://doi.org/10.1002/2015GL064260
  30. Naumann AK, Stevens B, Hohenegger C, Mellado JP (2017) A conceptual model of a shallow circulation induced by prescribed low-level radiative cooling. J Atmos Sci (in press)Google Scholar
  31. Nehrir AR, Kiemle C, Lebsock M, Kirchengast G, Buehler SA, Löhnert U, Liu CL, Hargrave P, Barrera-Verdejo M, Winker D (2017) Emerging technologies and synergies for airborne and space-based measurements of water vapor profiles. Surv Geophys (in press)Google Scholar
  32. Nishant N, Sherwood SC, Geoffroy O (2016) Radiative driving of shallow return flows from the ITCZ. J Adv Model Earth Syst 8(2):831–842Google Scholar
  33. Nuijens L, Stevens B, Siebesma AP (2009) The environment of precipitating shallow cumulus convection. J Atmos Sci 66(7):1962–1979Google Scholar
  34. Oueslati B, Bellon G (2013) Convective entrainment and large-scale organization of tropical precipitation: sensitivity of the CNRM-CM5 hierarchy of models. J Clim 26(9):2931–2946Google Scholar
  35. Raymond DJ, Raga GB, Bretherton CS, Molinari J, López-Carrillo C, Fuchs Ž (2003) Convective forcing in the intertropical convergence zone of the eastern Pacific. J Atmos Sci 60(17):2064–2082Google Scholar
  36. Risi C, Bony S, Fco Vimeux (2008) Influence of convective processes on the isotopic composition of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res Atmos 113(D19):306Google Scholar
  37. Roca R, Brogniez H, Chambon P, Chomette O, Cloché S, Gosset ME, Mahfouf JF, Raberanto P, Viltard N (2015) The Megha-Tropiques mission: a review after three years in orbit. Front Earth Sci 3:852Google Scholar
  38. Schiro KA, Neelin JD, Adams DK, Lintner BR (2016) deep convection and column water vapor over tropical land versus tropical ocean: a comparison between the Amazon and the tropical western Pacific. J Atmos Sci 73(10):4043–4063Google Scholar
  39. Schneider M, Hase F (2011) Optimal estimation of tropospheric H2O and δD with IASI/METOP. Atmos Chem Phys 11(5):16,107–16,146Google Scholar
  40. Sherwood SC, Roca R, Weckwerth TM, Andronova NG (2010) Tropospheric water vapor, convection, and climate. Rev Geophys 48(2):1481Google Scholar
  41. Stevens B, Bony S (2013) Water in the atmosphere. Phys Today 66(6):29Google Scholar
  42. Stevens B, Farrell D, Hirsch L, Jansen F, Nuijens L, Serikov I, Brügmann B, Forde M, Linné H, Lonitz K, Prospero JM (2016) The Barbados cloud observatory: anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull Am Meteorol Soc 97(5):787–801Google Scholar
  43. Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge atmospheric and space science series. Cambridge University Press, CambridgeGoogle Scholar
  44. Vial J, Bony S, Stevens B, Vogel R (2017) Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: a review. Surv Geophys.  https://doi.org/10.1007/s10712-017-9418-2
  45. Wirth M, Fix A, Mahnke P, Schwarzer H, Schrandt F, Ehret G (2009) The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance. Appl Phys B 96(1):201–213Google Scholar
  46. Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445(7127):528–532Google Scholar
  47. Wu CM, Stevens B, Arakawa A (2009) What controls the transition from shallow to deep convection? J Atmos Sci 66(6):1793–1806Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.Laboratoire Atmospheres, Milieux, Observations SpatialesGuyancourtFrance
  3. 3.Deutsches Zentrum für Luft- und RaumfahrtInstitute of Atmospheric PhysicsOberpfaffenhofenGermany
  4. 4.UPMC University Paris 06ParisFrance
  5. 5.LATMOS-IPSLUniversit Versailles St-QuentinParisFrance
  6. 6.Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  7. 7.Laboratoire de Météorologie Dynamique, CNRS, IPSLEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations