Complement and Malaria in Pregnancy

  • Andrea Weckman
  • Vanessa Tran
  • Kevin C. KainEmail author


More than half of the world’s pregnancies are at risk of malaria infection each year. Malaria infection during pregnancy increases the risk of adverse birth outcomes including stillbirth, preterm birth, and fetal growth restriction. Inflammation at the maternal-fetal interface and dysregulated angiogenesis are thought to underlie malaria-associated adverse birth outcomes. Uniquely, the complement system, through its impact on both inflammatory and angiogenic pathways, has been implicated in the pathobiology of malaria-induced adverse birth outcomes. Tight regulation of the complement system is critical for healthy pregnancies and its dysregulation has been linked to poor outcomes in non-infectious pathological pregnancy syndromes. Further, blockade of excessive complement activation can reverse or prevent malaria-induced pregnancy complications including placental vascular insufficiency, low birth weight, and neurodevelopmental deficits. Together, these data indicate a critical role for complement in the pathophysiology of malaria in pregnancy and suggest that it is a target for drugs to reduce malaria-mediated adverse pregnancy outcomes.


Malaria in pregnancy Placenta C5a-C5aR signaling Placental insufficiency Inflammation Angiogenesis VEGF sFlt1 Pregnancy outcomes Neurodevelopment 


  1. Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB et al (2009) Meta-analysis of neurobehavioural outcomes in very preterm and/or very low birth weight children. Pediatrics 124:717–728CrossRefPubMedGoogle Scholar
  2. Abrahams VM, Mor G (2005) Toll-like receptors and their role in the trophoblast. Placenta 26:540–547CrossRefPubMedGoogle Scholar
  3. Albieri A, Kipnis T, Bevilacqua E (1999) A possible role for activated complement component 3 in phagocytic activity exhibited by the mouse trophoblast. Am J Reprod Immunol 41:343–352CrossRefPubMedGoogle Scholar
  4. Bertolaccini ML, Contento G, Lennen R et al (2016) Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome. J Autoimmun 75:30–38CrossRefPubMedGoogle Scholar
  5. Bhutta AT, Cleves MA, Casey PH et al (2002) Cognitive and behavioural outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728–737CrossRefPubMedGoogle Scholar
  6. Biryukov S, Stoute JA (2014) Complement activation in malaria: friend or foe? Trends Mol Med 20:293–301CrossRefPubMedGoogle Scholar
  7. Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44:999–1010CrossRefPubMedGoogle Scholar
  8. Bulla R, Agostinis C, Bossi F et al (2008) Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium. Mol Immunol 45:2629–2640CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bulla R, Bossi F, Agostinis C et al (2009) Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol 82:119–125CrossRefPubMedGoogle Scholar
  10. Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278CrossRefPubMedGoogle Scholar
  11. Conroy A, Serghides L, Finney C et al (2009) C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS One 4:e4953CrossRefPubMedPubMedCentralGoogle Scholar
  12. Conroy AL, Silver KL, Zhong K et al (2013) Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe 13:215–226CrossRefPubMedGoogle Scholar
  13. Coulthard LG, Hawksworth OA, Li R et al (2017) Complement C5aR1 signaling promotes polarization and proliferation of embryonic neural progenitor cells through PKCζ. J Neurosci 37(22):5395–5407CrossRefPubMedGoogle Scholar
  14. Dellicour S, Tatem AJ, Guerra CA et al (2010) Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med 7:e1000221CrossRefPubMedPubMedCentralGoogle Scholar
  15. Derzsy Z, Prohaszka Z, Rigo J Jr et al (2010) Activation of the complement system in normal pregnancy and preeclampsia. Mol Immunol 47:1500–1506CrossRefPubMedGoogle Scholar
  16. Desai M, ter Kuile FO, Nosten F et al (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7:93–104CrossRefPubMedGoogle Scholar
  17. Duffy MF, Maier AG, Byrne TJ et al (2006) VAR2CSA is the principal ligand for chondroitin sulphate A in two allogeneic isolates of plasmodium falciparum. Mol Biochem Parasitol 148:117–124CrossRefPubMedGoogle Scholar
  18. Fonseca MI, Ager RR, Chu SH et al (2009) Treatment with a C5aR antagonist decreases pathology and enhances behavioural performance in murine models of Alzheimer’s disease. J Immunol 183:1375–1383CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fried M, Nosten F, Brockman A et al (1998) Maternal antibodies block malaria. Nature 395:851–852CrossRefPubMedGoogle Scholar
  20. Gagnon R (2003) Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol 110:S99–S107CrossRefPubMedGoogle Scholar
  21. Gallagher D, Norman AA, Woodard CL et al (2013) Transient maternal IL-6 mediates long-lasting changes in neural stem cell pools by deregulating an endogenous self-renewal pathway. Cell Stem Cell 13:564–576CrossRefPubMedGoogle Scholar
  22. Girardi G, Berman J, Redecha P et al (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112:1644–1654CrossRefPubMedPubMedCentralGoogle Scholar
  23. Girardi G, Yarilin D, Thurman JM et al (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203:2165–2175CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gonzalez JM, Franzke CW, Yang F et al (2011) Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am J Pathol 179:838–849CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guseh SH, Feinberg BB, Dawood HY et al (2015) Urinary excretion of C5b-9 is associated with the anti-angiogenic state in severe preeclampsia. Am J Reprod Immunol 73:437–444CrossRefPubMedGoogle Scholar
  26. Guyatt HL, Snow RW (2001) Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans R Soc Trop Med Hyg 95:569–576CrossRefPubMedGoogle Scholar
  27. Haeger M, Unander M, Norder-Hansson B et al (1992) Complement, neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 79:19–26PubMedGoogle Scholar
  28. Holers VM, Girardi G, Mo L et al (2002) Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med 195:211–220CrossRefPubMedPubMedCentralGoogle Scholar
  29. Indredavik MS, Vik T, Evensen KA et al (2010) Perinatal risk and psychiatric outcome in adolescents born preterm with very low birth weight or small for gestational age. J Dev Behav Pediatr 31:286–294CrossRefPubMedGoogle Scholar
  30. Keen J, Serghides L, Avi K et al (2007) HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites. PLoS Med 4:e181CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kelly R, Arnold L, Richards S et al (2010) The management of pregnancy in paroxysmal nocturnal haemoglobinuria on long term eculizumab. Br J Haematol 149:446–450CrossRefPubMedGoogle Scholar
  32. Kelly R, Hochsmann B, Szer J et al (2015) Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 373:1032–1039CrossRefGoogle Scholar
  33. Knuesel I, Chicha L, Britschgi M et al (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10:643–660CrossRefPubMedGoogle Scholar
  34. Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683CrossRefPubMedGoogle Scholar
  35. Liu L, Oza S, Hogan D et al (2015) Global, regional, and national causes of child mortality in 2000-2013, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385:430–440CrossRefPubMedGoogle Scholar
  36. Luu TM, Rehman Mian MO, Nuyt AM (2017) Long-term impact of preterm birth: neurodevelopmental and physical health outcomes. Clin Perinatol 44:305–314CrossRefPubMedGoogle Scholar
  37. Lynch AM, Salmon JE (2010) Dysregulated complement activation as a common pathway of injury in preeclampsia and other pregnancy complications. Placenta 31:561–567CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lynch AM, Gibbs RS, Murphy JR et al (2008) Complement activation fragment Bb in early pregnancy and spontaneous preterm birth. Am J Obstet Gynecol 199:354.e1–354.e8CrossRefGoogle Scholar
  39. Lynch AM, Gibbs RS, Murphy JR et al (2011) Early elevations of the complement activation fragment C3a and adverse pregnancy outcomes. Obstet Gynecol 117:75–83CrossRefPubMedPubMedCentralGoogle Scholar
  40. McDonald CR, Elphinstone RE, Kain KC (2013) The impact of placental malaria on neurodevelopment of exposed infants: a role for the complement system? Trends Parasitol 29:213–219CrossRefPubMedGoogle Scholar
  41. McDonald CR, Cahill LS, Ho KT et al (2015) Experimental malaria in pregnancy induces neurocognitive injury in uninfected offspring via a C5a-C5a receptor dependent pathway. PLoS Pathog 11:e1005140CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mens PF, Bojtor EC, Schallig HD (2010) Molecular interactions in the placenta during malaria infection. Eur J Obstet Gynecol Reprod Biol 152:126–132CrossRefPubMedGoogle Scholar
  43. Mohlin FC, Mercier E, Fremeaux-Bacchi V et al (2013) Analysis of genes coding for CD46, CD55, and C4b-binding protein in patients with idiopathic, recurrent, spontaneous pregnancy loss. Eur J Immunol 43:1617–1629CrossRefPubMedPubMedCentralGoogle Scholar
  44. Morgan TK (2016) Role of the placenta in preterm birth: a review. Am J Perinatol 33:258–266CrossRefPubMedGoogle Scholar
  45. Muehlenbachs A, Fried M, Lachowitzer J et al (2007) Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection. J Immunol 179:557–565CrossRefPubMedGoogle Scholar
  46. Neres R, Marinho CR, Goncalves LA et al (2008) Pregnancy outcome and placenta pathology in plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS One 3:e1608CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pedroni SM, Gonzalez JM, Wade J et al (2014) Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth. Biochim Biophys Acta 1842:107–115CrossRefPubMedGoogle Scholar
  48. Pyhala R, Hovi P, Lahti M et al (2014) Very low birth weight, infant growth, and autism-spectrum traits in adulthood. Pediatrics 134:1075–1083CrossRefPubMedGoogle Scholar
  49. Regal JF, Gilbert JS, Burwick RM (2015) The complement system and adverse pregnancy outcomes. Mol Immunol 67:56–70CrossRefPubMedPubMedCentralGoogle Scholar
  50. Richani K, Romero R, Soto E et al (2005a) Unexplained intrauterine fetal death is accompanied by activation of complement. J Perinat Med 33:296–305CrossRefPubMedGoogle Scholar
  51. Richani K, Soto E, Romero R et al (2005b) Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med 17:239–245CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ricklin D, Lambris JD (2016) New milestones ahead in complement-targeted therapy. Semin Immunol 28:208–222CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rogerson SJ, Pollina E, Getachew A et al (2003) Placental monocyte infiltrates in response to plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg 68:115–119PubMedCrossRefGoogle Scholar
  54. Rogerson SJ, Hviid L, Duffy PE et al (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7:105–117CrossRefPubMedGoogle Scholar
  55. Salmon JE, Heuser C, Triebwasser M et al (2011) Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med 8:e1001013CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705CrossRefPubMedPubMedCentralGoogle Scholar
  57. Silver KL, Zhong K, Leke RG et al (2010) Dysregulation of angiopoietins is associated with placental malaria and low birth weight. PLoS One 5:e9481CrossRefPubMedPubMedCentralGoogle Scholar
  58. Silver KL, Conroy AL, Leke RG et al (2011) Circulating soluble endoglin levels in pregnant women in Cameroon and Malawi—associations with placental malaria and fetal growth restriction. PLoS One 6:e24985CrossRefPubMedPubMedCentralGoogle Scholar
  59. Singh J, Ahmed A, Girardi G (2011) Role of complement component C1q in the onset of preeclampsia in mice. Hypertension 58:716–724CrossRefPubMedGoogle Scholar
  60. Soto E, Romero R, Richani K et al (2005) Anaphylatoxins in preterm and term labor. J Perinat Med 33:306–313CrossRefPubMedPubMedCentralGoogle Scholar
  61. Soto E, Romero R, Richani K et al (2009) Evidence for complement activation in the amniotic fluid of women with spontaneous preterm labor and intra-amniotic infection. J Matern Fetal Neonatal Med 22:983–992CrossRefPubMedPubMedCentralGoogle Scholar
  62. Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389CrossRefPubMedGoogle Scholar
  63. Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178CrossRefPubMedGoogle Scholar
  64. Suguitan AL Jr, Leke RG, Fouda G et al (2003) Changes in the levels of chemokines and cytokines in the placentas of women with plasmodium falciparum malaria. J Infect Dis 188:1074–1082CrossRefPubMedGoogle Scholar
  65. Tedesco F, Narchi G, Radillo O et al (1993) Susceptibility of human trophoblast to killing by human complement and the role of the complement regulatory proteins. J Immunol 151:1562–1570PubMedGoogle Scholar
  66. Umbers AJ, Aitken EH, Rogerson SJ (2011) Malaria in pregnancy: small babies, big problem. Trends Parasitol 27:168–175CrossRefPubMedGoogle Scholar
  67. Vaisbuch E, Romero R, Erez O et al (2010) Activation of the alternative pathway of complement is a feature of pre-term parturition but not of spontaneous labor at term. Am J Reprod Immunol 63:318–330CrossRefPubMedPubMedCentralGoogle Scholar
  68. Veerhuis R, Nielsen HM, Tenner AJ (2011) Complement in the brain. Mol Immunol 48:1592–1603CrossRefPubMedPubMedCentralGoogle Scholar
  69. Woodruff TM, Ager RR, Tenner AJ et al (2010) The role of the complement system and the activation fragment C5a in the central nervous system. NeuroMolecular Med 12:179–192CrossRefPubMedGoogle Scholar
  70. Xu C, Mao D, Holers VM et al (2000) A critical role for murine complement regulator crry in fetomaternal tolerance. Science 287:498–501CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Weckman
    • 1
    • 2
  • Vanessa Tran
    • 2
  • Kevin C. Kain
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  2. 2.Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global HealthToronto General Research Institute-University Health NetworkTorontoCanada
  3. 3.Division of Infectious Diseases, Tropical Disease Unit, Department of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations