Mechanisms of Complement Activation in Malaria

  • Ronald P. TaylorEmail author
  • José A. Stoute
  • Margaret A. Lindorfer


Activation of the classical pathway of complement, mediated by immune complexes, is very well-documented in malaria. In addition, several of the breakdown products that are produced upon rupture of malaria-infected erythrocytes, including hemin and the digestive vacuole, activate the alternative pathway of complement. Evidence for complement activation in malaria includes reduction in serum titers of total complement hemolytic activity and of individual complement components as well as increases in soluble complement activation products in the serum. In addition, C3 activation fragments have been demonstrated to be covalently bound to both infected and uninfected erythrocytes under a variety of conditions in malaria, thus leading to the extravascular clearance of erythrocytes to the spleen. This erythrocyte opsonization reaction, mediated by both the classical and alternative pathways of complement, may be additionally amplified in severe cases of malaria complicated by acidosis due to increased activation of the alternative pathway of complement.


Acidosis c3b opsonization Complement Complement receptor 1 Decay accelerating factor Digestive vacuole Extravascular clearance Immune complexes Malaria Spleen 


  1. Abdalla S, Weatherall DJ (1982) The direct antiglobin test in P. Falciparum malaria. Br J Haemotol 51:415–425CrossRefGoogle Scholar
  2. Adam C, Geniteau M, Gougerot-Pocidalo M, Verroust P, Lebras J, Gibert C, Morel-Maroger L (1981) Cryoglobulins, circulating immune complexes, and complement activation in cerebral malaria. Infect Immun 31(2):530–535PubMedCentralPubMedGoogle Scholar
  3. Arese P, De Flora A (1990) Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 27(1):1–40PubMedGoogle Scholar
  4. Atkinson JP, Glew RH, Neva FA, Frank MM (1975) Serum complement and immunity in experimental simian malaria. II. Preferential activation of early components and failure of depletion of late components to inhibit protective immunity. J Infect Dis 131(1):26–33CrossRefPubMedGoogle Scholar
  5. Berg A, Otterdal K, Patel S, Gonca M, David C, Dalen I, Nymo S, Nilsson M, Nordling S, Magnusson PU, Ueland T, Prato M, Giribaldi G, Mollnes TE, Aukrust P, Langeland N, Nilsson PH (2015) Complement activation correlates with disease severity and contributes to cytokine responses in Plasmodium falciparum malaria. J Infect Dis 212(11):1835–1840CrossRefPubMedGoogle Scholar
  6. Birmingham DJ, Logar CM, Shen X-P, Chen W (1996) The baboon erythrocyte complement receptor is a glycophosphatidylinositol-linked protein encoded by a homologue of the human CR1-like genetic element. J Immunol 157:2586–2592PubMedGoogle Scholar
  7. Biryukov S, Stoute JA (2014) Complement activation in malaria: friend or foe? Trends Mol Med 20(5):293–301CrossRefPubMedGoogle Scholar
  8. Biryukov S, Angov E, Landmesser ME, Spring MD, Ockenhouse CF, Stoute JA (2016) Complement and antibody-mediated enhancement of red blood cell invasion and growth of malaria parasites. EBioMedicine 9:207–216CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blum SF, Sullivan JM, Gardner FH (1967) The exacerbation of hemolysis in paroxysmal nocturnal hemoglobinuria by strenuous exercise. Blood 30(4):513–516PubMedGoogle Scholar
  10. Buffet PA, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M, Turner GD, Mercereau-Puijalon O (2011) The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood 117(2):381–392CrossRefPubMedPubMedCentralGoogle Scholar
  11. Casals-Pascual C, Kai O, Lowe B, English M, Williams TN, Maitland K, Newton CRCJ, Peshu N, Roberts DJ (2006) Lactate levels in severe malarial anaemia are associated with haemozoin-containing neutrophils and low levels of IL-12. Malar J 5:101CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chou AC, Fitch CD (1980) Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. J Clin Invest 66:856–858CrossRefPubMedPubMedCentralGoogle Scholar
  13. Conroy A, Serghides L, Finney C, Owino SO, Kumar S, Gowda DC, Liles WC, Moore JM, Kain KC (2009) C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS One 4(3):e4953CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cornacoff JB, Hebert LA, Smead WL, Van Aman ME, Birmingham DJ, Waxman FJ (1983) Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest 71:236–247CrossRefPubMedPubMedCentralGoogle Scholar
  15. Craig ML, Reinagel ML, Martin EN, Schlimgen R, Nardin A, Taylor RP (1999) Infusion of bispecific monoclonal antibody complexes into monkeys provides immunologic protection against later challenge with a model pathogen. Clin Immunol 92:170–180CrossRefPubMedGoogle Scholar
  16. Dasari P, Heber SD, Beisele M, Torzewski M, Reifenberg K, Orning C, Fries A, Zapf AL, Baumeister S, Lingelbach K, Udomsangpetch R, Bhakdi SC, Reiss K, Bhakdi S (2012) Digestive vacuole of Plasmodium falciparum released during erythrocyte rupture dually activates complement coagulation. Blood 119:4301–4310CrossRefPubMedGoogle Scholar
  17. Dasari P, Fries A, Heber SD, Salama A, Blau IW, Linegelbach K, Bhakdi SC, Udomsangpetch R, Torzewski M, Reiss K, Bhakdi S (2014) Malarial anemia: digestive vacuole of Plasmodium falciparum mediates complement deposition on bystander cells to provoke hemophagocytosis. Med Microbiol Immunol 203(6):383–393CrossRefPubMedGoogle Scholar
  18. de Olivera RB, Wang JP, Ram S, Gazzinelli RT, Finberg RW, Golenbock DT (2014) Increased survival in B-cell-deficient mice during experimental cerebral malaria suggests a role for circulating immune complexes. MBio 5(2):00949–00914Google Scholar
  19. Delanghe JR, Langlois MR (2001) Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin Chim Acta 312:13–23CrossRefPubMedGoogle Scholar
  20. DiLillo DJ, Pawluczkowycz AW, Peng W, Kennedy AD, Beum PV, Lindorfer MA, Taylor RP (2006) Selective and efficient inhibition of the alternative pathway of complement by a mAb that recognizes C3b/iC3b. Mol Immunol 43(7):1010–1019CrossRefPubMedGoogle Scholar
  21. Dodds AW, Sim RB (1997) Complement. A practical approach. IRL at Oxford University Press, OxfordGoogle Scholar
  22. Egan TJ (2002) Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. J Inorg Biochem 91:19–26CrossRefPubMedGoogle Scholar
  23. Ekvall H, Arese P, Turrini F, Ayi K, Mannu F, Premji Z, Bjorkman A (2001) Acute haemolysis in childhood falciparum malaria. Trans R Soc Trop Med Hyg 95:611–617CrossRefPubMedGoogle Scholar
  24. English M, Sauerwein R, Waruiru C, Mosobo M, Obiero J, Lowe B, Marsh K (1997) Acidosis in severe childhood malaria. Quart J Med 90:263–270CrossRefGoogle Scholar
  25. Facer CA (1980) Direct Coombs antiglobulin reactions in Gambian children with Plasmodium falciparum malaria. II. Specificity of erythrocyte-bound IgG. Clin Exp Immunol 39:279–288PubMedCentralPubMedGoogle Scholar
  26. Facer CA, Bray RS, Brown J (1975) Direct Coombs antiglobulin ractions in Gambian children with Plasmodium falciparum malaria. I. Incidence and class specificity. Clin Exp Immunol 35:119–127Google Scholar
  27. Fearon DT (1980) Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J Exp Med 152:20–30CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fishelson Z, Marikovsky Y (1993) Reduced CR1 expression on aged human erythrocytes: immuno-electron microscopic and functional analysis. Mech Age Dev 72:25–35CrossRefGoogle Scholar
  29. Fishelson Z, Horstmann RD, Muller-Eberhard HJ (1987) Regulation of the alternative pathway of complement by pH. J Immunol 138:3392–3395PubMedGoogle Scholar
  30. Frimat M, Tabarin F, Dimitrov JD, Poitou C, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT (2013) Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood 122(2):282–292CrossRefPubMedGoogle Scholar
  31. Garred P, Nielsen MA, Kurtzhals JAL, Malhotra R, Madsen HO, Goka BQ, Akanmori BD, Sim RB, Hviid L (2003) Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes. Infect Immun 71(9):5245–5253CrossRefPubMedPubMedCentralGoogle Scholar
  32. Giribaldi G, Ulliers D, Mannu F, Arese P, Turrini F (2001) Growth of Plasmodium falciparum induces state-dependent haemichrome formation, oxidative aggregation of band 3, membrane deposition of complement and antibodies, and phagocytosis of parasitized erythrocytes. Br J Immunol 113:492–499Google Scholar
  33. Goka BQ, Kwarko H, Kurtzhals JAL, Gyan B, Ofori-Adjei E, Ohene SA, Hviid L, Akanmori BD, Neequaye J (2001) Complement binding to erythrocytes is associated with macrophage activation and reduced haemoglobin in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 95:545–549CrossRefPubMedGoogle Scholar
  34. Greenwood BM, Brueton MJ (1974) Complement activation in children with acute malaria. Clin Exp Immunol 18:267–272PubMedCentralPubMedGoogle Scholar
  35. Griffioen AW, Franklin SW, Zegers BJM, Rijkers GT (1993) Expression and functional characteristics of the complement receptor type 2 on adult and neonatal B lymphocytes. Clin Immunol Immunopathol 69:1–8CrossRefPubMedGoogle Scholar
  36. Helegbe GK, Goka BQ, Kurtzhals JAL, Addae M, Ollaga E, Tetteh JKA, Dodoo D, Ofori MF, Obeng-Adjei G, Hirayama K, Awandare GA, Akanmori BD (2007) Complement activation in Ghanaian children with severe Plasmodium falciparum malaria. Malar J 6:165. CrossRefPubMedCentralPubMedGoogle Scholar
  37. Heller T, Gessner JE, Schmidt RE, Klos A, Bautsch W, Kohl J (1999) Cutting Edge: Fc receptor Type I for IgG macrophages and complement mediate the inflammatory response in immune complex peritonitis. J Immunol 162:5657–5661PubMedGoogle Scholar
  38. Holguin MH, Wilcox LA, Bernshaw NJ, Rosse WF, Parker CJ (1990) Erythrocyte membrane inhibitor of reactive lysis: effects of PI-PLC on the isolated and cell-associated protein. Blood 75:284–289PubMedGoogle Scholar
  39. Humphrey JH, Grennan D, Sundaram V (1984) The origin of follicular dendritic cells in the mouse and the mechanism of trapping of immune complexes on them. Eur J Immunol 14:859–864CrossRefPubMedGoogle Scholar
  40. Josling GA, Llinas M (2015) Sexual development in Plasmodium parasites: knowing when it’s time to commit. Nat Rev Microbiol 13(9):573–587CrossRefPubMedGoogle Scholar
  41. Klabunde J, Uhlemann AC, Tebo AE, Kimmel J, Schwarz RT, Kremsner PG, Kun JFJ (2002) Recognition of Plasmodium falciparum proteins by mannan-binding lectin, a component of the human innate immune system. Parasitol Res 88:113–117CrossRefPubMedGoogle Scholar
  42. Korir JC, Nyakoe NK, Awinda G, Waitumbi JN (2016) Complement activation by merozoite antigens of Plasmodium flaciparum. PLoS One 9(8):e105093CrossRefGoogle Scholar
  43. Kuhn SE, Nardin A, Klebba PE, Taylor RP (1998) E. coli bound to the primate erythrocyte complement receptor via bispecific monoclonal antibodies are transferred to and phagocytosed by human monocytes in an in vitro model. J Immunol 160(10):5088–5097PubMedGoogle Scholar
  44. Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157:175–188CrossRefPubMedGoogle Scholar
  45. Lindorfer MA, Jinivizian HB, Foley PL, Kennedy AD, Solga MD, Taylor RP (2003) B cell complement receptor 2 transfer reaction. J Immunol 170(7):3671–3678CrossRefPubMedGoogle Scholar
  46. Lindorfer MA, Kohl J, Taylor RP (2014) Interactions between the complement system and Fcg receptors. In: Ackerman ME, Nimmerjahn F (eds) Antibody Fc: linking adaptive and innate immunity. Elsevier, Philadelphia, PA, pp 49–74CrossRefGoogle Scholar
  47. Lindorfer MA, Cook EM, Reis ES, Ricklin D, Risitano AM, Lambris JD, Taylor RP (2016) Compstatin Cp40 blocks hematin-mediated deposition of C3b fragments on erythrocytes: implications for treatment of malarial anemia. Clin Immunol 171:32–35CrossRefPubMedPubMedCentralGoogle Scholar
  48. Looareesuwan S, Ho M, Wattanagoon Y, White NJ, Warrell DA, Bunnag D, Harinasuta T, Wyler DJ (1987) Dynamic alteration in splenic function during acute falciparum malaria. N Engl J Med 317:675–679CrossRefPubMedGoogle Scholar
  49. Marsh K, Forster D et al (1995) Indicators of life-threatening malaria in African children. N Engl J Med 332:1399–1404CrossRefPubMedGoogle Scholar
  50. Mastellos DC, Yancopoulou D, Kokkinos P, Huber-Lang M, Hajishengallis G, Biglarnia AR, Lupu F, Nilsson B, Risitano AM, Ricklin D, Lambris JD (2015) Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur J Clin Investig 45(4):423–440CrossRefGoogle Scholar
  51. Mibei EK, Orago ASS, Stoute JA (2005) Immune complex levels in children with severe Plasmodium falciparum malaria. Am J Trop Med Hyg 72:593–599PubMedCrossRefGoogle Scholar
  52. Mibei EK, Otieno WO, Orago ASS, Stoute JA (2008) Distinct pattern of class and subclass antibodies in immune complexes of children with cerebral malaria and severe malarial anemia. Parasite Immunol 30:334–341CrossRefPubMedGoogle Scholar
  53. Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679CrossRefPubMedGoogle Scholar
  54. Miller LH, Ackerman HC, Su XZ, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19(2):156–167CrossRefPubMedPubMedCentralGoogle Scholar
  55. Morgan BP (2000) Complement methods and protocols. Humana Press, Totowa, NJCrossRefGoogle Scholar
  56. Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M (1968) Plasma concentrations of hemopexin, haptoglobin, and heme in patients with various hemolytic diseases. Blood 32(5):811–815PubMedGoogle Scholar
  57. Nardin A, Lindorfer MA, Taylor RP (1999) How are immune complexes bound to the primate erythrocyte complement receptor transferred to acceptor phagocytic cells? Mol Immunol 36(13–14):827–835CrossRefPubMedGoogle Scholar
  58. Neva FA, Howard WA, Glew RH, Krotoski WA, Gam AA, Collins WE, Atkinson JP, Frank MM (1974) Relationship of serum complement levels to events of the malarial paroxysm. J Clin Invest 54:451–460CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nicholson-Weller A, Burge J, Fearon DT, Weller PF, Austen KF (1982) Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol 129:184–189PubMedGoogle Scholar
  60. Nyakoe NK, Taylor RP, Makumi JN, Waitumbi JN (2009) Complement consumption in children with Plasmodium falciparum malaria. Malar J 8:7. CrossRefPubMedCentralPubMedGoogle Scholar
  61. Odhiambo CO, Otieno W, Adhiambo C, Odera MM, Stoute JA (2008) Increased deposition of Ceb on red cells with low CR1 and CD55 in a malaria-endemic region of western Kenya: implications for the development of severe anemia. BMC Med 6:23CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ogonda LA, Orago ASS, Otieno MF, Adhiambo C, Otieno W, Stoute JA (2010) The levels of CD16/Fcg receptor IIIA on CD14+CD16+ monocytes are higher in children with severe Plasmodium falciparum anemia than in children with cerebral or uncomplicated malaria. Infect Immun 78(5):2173–2181CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ohas EA, Adams JH, Waitumbi JN, Orago ASS, Barbosa A, Lanar DE, Stoute JA (2004) Measurement of antibody levels against region II of the erythrocyte-binding antigen 175 of Plasmodium falciparum in an area of malaria holoendemicity in western Kenya. Infect Immun 72:735–741CrossRefPubMedPubMedCentralGoogle Scholar
  64. Omodeo-Sale F, Motti A, Dondorp A, White NJ, Taramelli D (2005) Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products. Eur J Haematol 74:324–332CrossRefPubMedGoogle Scholar
  65. Owuor BZ, Odhiambo CO, Otieno WO, Adhiambo C, Makawiti DW, Stoute JA (2008) Reduced immune complex binding capacity and increased complement susceptibility of red cells from children with severe malaria-associated anemia. Mol Med 14(3–4):89–97PubMedGoogle Scholar
  66. Parker CJ (2002) Historical aspects of paroxysmal nocturnal haemoglobinuria: “defining the disease”. Br J Haemtol 117:3–32CrossRefGoogle Scholar
  67. Patel SN, Berghout J, Lovegrove FE, Ayi K, Conroy A, Serghides L, Min-oo G, Gowda DC, Sarma JV, Rittirsch D, Ward PA, Liles WC, Gros P, Kain KC (2008) C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 205:1133–1143CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pawluczkowycz AW, Lindorfer MA, Waitumbi JN, Taylor RP (2007) Hematin promotes complement alternative pathway-mediated deposition of C3 activation fragments on human erythrocytes: potential implications for the pathogenesis of anemia in malaria. J Immunol 179(8):5543–5552CrossRefPubMedGoogle Scholar
  69. Peake PW, Pussell BA, Mackinnon B, Charlesworth JA (2002) The effect of pH and nucleophiles on complement activation by human proximal tubular epithelial cells. Nephrol Dial Transplant 17:745–752CrossRefPubMedGoogle Scholar
  70. Phanuphak P, Hanvanich M, Sakulramrung R, Moollaor P, Sitprija V, Phanthumkosol D (1985) Complement changes in falciparum malaria infection. Clin Exp Immunol 59:571–576PubMedCentralPubMedGoogle Scholar
  71. Quinn TC, Wyler DJ (1979) Intravascular clearance of parasitized erythrocytes in rodent malaria. J Clin Invest 63:1187–1194CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ramos TN, Darley MM, Weckbach S, Stahel PF, Tomlinson S, Barnum SR (2012) The C5 convertase is not required for activation of the terminal complement pathway in murine experimental cerebral malaria. J Biol Chem 287(29):24734–24738CrossRefPubMedPubMedCentralGoogle Scholar
  73. Reinagel ML, Taylor RP (2000) Transfer of immune complexes from erythrocyte CR1 to mouse macrophages. J Immunol 164(4):1977–1985CrossRefPubMedGoogle Scholar
  74. Reinagel ML, Gezen M, Ferguson PJ, Kuhn S, Martin EN, Taylor RP (1997) The primate erythrocyte complement receptor (CR1) as a privileged site: binding of immunoglobulin G to erythrocyte CR1 does not target erythrocytes for phagocytosis. Blood 89(3):1068–1077PubMedGoogle Scholar
  75. Risitano AM, Marando L, Seneca E, Rotoli B (2008) Hemoglobin normalization after splenectomy in a paroxysmal nocturnal hemoglobinuria patient treated by eculizumab. Blood 112:449–450CrossRefPubMedGoogle Scholar
  76. Risitano AM, Notaro R, Marando L, Serio B, Ranaldi D, Seneca E, Ricci P, Alfinito F, Camera A, Gianfaldoni G, Amendola A, Boschetti C, DiBona E, Fratellanza G, Barbano F, Rodeghiero F, Zanella A, Iori AP, Selleri C, Luzzatto L, Rotoli B (2009) Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria in patients treated by eculizumab. Blood 113(17):4094–4100CrossRefPubMedGoogle Scholar
  77. Roestenberg M, McCall M, Mollnes TE, Van Deuren M, Sprong T, Klasen I, Hermsen CC, Sauerwein RW, van der Ven A (2007) Complement activation in experimental human malaria infection. Trans R Soc Trop Med Hyg 101:643–649CrossRefPubMedGoogle Scholar
  78. Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD (2016) Heme: modulator of plasma systems in hemolytic diseases. Trends Mol Med 22(3):200–213CrossRefPubMedGoogle Scholar
  79. Safeukui I, Gomez ND, Adelani AA, Burte F, Afolabi NK, Akondy R, Velazquez P, Holder A, Tewari R, Buffet P, Brown BJ, Shokunbi WA, Olaleye D, Sodeinde O, Kazura J, Ahmed R, Mohandas N, Fernandez-Reyes D, Haldar K (2015) Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. MBio 6(1):02493–02414CrossRefGoogle Scholar
  80. Schmidt W, Correa R, Boning D, Ehrich JHH, Kruger C (1994) Oxygen transport properties in malaria-infected rodents—a comparison between infected and noninfected erythrocytes. Blood 83(12):3746–3752PubMedGoogle Scholar
  81. Silver KL, Higgins SJ, McDonald CR, Kain KC (2010) Complement driven innate immune response to malaria: fueling severe malarial diseases. Cell Microbiol 12(8):1036–1045CrossRefPubMedGoogle Scholar
  82. Smith DJ, Winslow RM (1992) Effects of extraerythrocytic hemoglobin and its components on mononuclear cell procoagulant activity. J Lab Clin Med 119:176–182PubMedGoogle Scholar
  83. Stanley HA, Mayes JT, Cooper NR, Reese RT (1984) Complement activation by the surface of Plasmodium falciparum infected erythrocytes. Mol Immunol 21:145–150CrossRefPubMedGoogle Scholar
  84. Stoute JA (2005) Complement-regulatory proteins in severe malaria: too little or too much of a good thing? Trends Parasitol 21(5):218–223CrossRefPubMedGoogle Scholar
  85. Stoute JA, Odindo AO, Owuor BA, Mibei EK, Opollo MO, Waitumbi JN (2003) Loss of red blood cell-complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia. J Infect Dis 187:522–525CrossRefPubMedGoogle Scholar
  86. Taylor TE, Borgstein A, Molyneux ME (1993) Acid-base status in paediatric Plasmodium falciparum malaria. Q J Med 86:99–109PubMedGoogle Scholar
  87. Timens W, Boes A, Rozeboom-uiterwijk T, Poppema S (1989) Immaturity of the human splenic marginal zone in infancy: possible contribution to the deficient infant immune response. J Immunol 143(10):3200–3206PubMedGoogle Scholar
  88. Turrini F, Ginsburg H, Bussolino F, Pescarmona GP, Sierra MV, Arese P (1992) Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage. Blood 80:801–808PubMedGoogle Scholar
  89. Urban BC, Hien TT, Day NP, Phu NH, Roberts R, Pongponratn E, Jones M, Mai NTH, Bethell D, Turner GDH, Ferguson D, White NJ, Roberts DJ (2005) Fatal Plasmodium falciparum malaria causes specific patterns of splenic architectural disorganization. Infect Immun 73(4):1986–1994CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vinchi F, De Franceschi L, Ghigo A, Townes T, Cimino J, Silengo L, Hirsch E, Altruda F, Tolosano E (2013) Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 127:1317–1329CrossRefPubMedGoogle Scholar
  91. Waitumbi J, Malachi O, Muga R, Misore A, Stoute J (2000) Red cell surface changes and erythrophagocytosis in children with severe Plasmodium falciparum anemia. Blood 95(4):1481–1486PubMedGoogle Scholar
  92. Waitumbi JN, Donvito B, Kisserli A, Cohen JHM, Stoute JA (2004) Age-related changes in red blood cell complement regulatory proteins and susceptibility to severe malaria. J Infect Dis 190:1183–1191CrossRefPubMedGoogle Scholar
  93. Whipple EC, Shanahan RS, Ditto AH, Taylor RP, Lindorfer MA (2004) Analyses of the in vivo trafficking of stoichiometric doses of an anti-complement receptor 1/2 monoclonal antibody infused intravenously in mice. J Immunol 173(4):2297–2306CrossRefPubMedGoogle Scholar
  94. Whipple EC, Ditto AH, Shanahan RS, Gatesman JR, Little SF, Taylor RP, Lindorfer MA (2007) Low doses of antigen coupled to anti-CR2 mAbs induce rapid and enduring IgG immune responses in mice and in cynomolgus monkeys. Mol Immunol 44(4):377–388CrossRefPubMedGoogle Scholar
  95. Yancey KB, O’Shea J, Chused T, Brown E, Takahashi T, Frank MM, Lawley TJ (1985) Human C5a modulates monocyte Fc and C3 receptor expression. J Immunol 135:465–470PubMedGoogle Scholar
  96. Zipfel PF, Hallstrom T, Riesbeck K (2013) Human complement control and complement evasion by pathogenic microbes—tipping the balance. Mol Immunol 56(3):152–160CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ronald P. Taylor
    • 1
    Email author
  • José A. Stoute
    • 2
  • Margaret A. Lindorfer
    • 1
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of Medicine, and Microbiology and ImmunologyPenn State University College of MedicineHersheyUSA

Personalised recommendations