The Complement System

  • Sergei Biryukov
  • José A. StouteEmail author


The complement system consists of a complex cascade of zymogens that leads to the formation of opsonins (predominantly C3b and C4b) that promote phagocytosis and the insertion of the membrane attack complex into the membranes, resulting in lysis. It constitutes one of the first lines of defense against pathogens as it does not require prior maturation or adaptation. The complement system also exerts an important influence on the adaptive immune response by acting synergistically with antibodies as well as promoting B- and T-cell stimulation. Although traditionally we have learned of three activation pathways, the reality is that there are multiple activation mechanisms provided by crosstalk with other systems such as the coagulation system. In order to prevent autologous attack, the complement system has many regulatory points that are intended to prevent autologous damage.


Complement C3 C3b Antibody C4 C2 MAC Alternative pathway Classical pathway Mannose binding lectin pathway 


  1. Agrawal A, Shrive AK, Greenhough TJ, Volanakis JE (2001) Topology and structure of the C1q-binding site on C-reactive protein. J Immunol 166(6):3998–4004PubMedCrossRefGoogle Scholar
  2. Alba-Dominguez M, Lopez-Lera A, Garrido S, Nozal P, Gonzalez-Granado I, Melero J, Soler-Palacin P, Camara C, Lopez-Trascasa M (2012) Complement factor I deficiency: a not so rare immune defect: characterization of new mutations and the first large gene deletion. Orphanet J Rare Dis 7:42PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287(13):10210–10222PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, Bruckner UB, Nilsson B, Gebhard F, Lambris JD, Huber-Lang M (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185(9):5628–5636PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ames RS, Li Y, Sarau HM, Nuthulaganti P, Foley JJ, Ellis C, Zeng Z, Su K, Jurewicz AJ, Hertzberg RP, Bergsma DJ, Kumar C (1996) Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem 271(34):20231–20234PubMedCrossRefGoogle Scholar
  6. Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med 38:175–194PubMedCrossRefGoogle Scholar
  7. Asokan R, Banda NK, Szakonyi G, Chen XS, Holers VM (2013) Human complement receptor 2 (CR2/CD21) as a receptor for DNA: implications for its roles in the immune response and the pathogenesis of systemic lupus erythematosus (SLE). Mol Immunol 53(1–2):99–110PubMedCrossRefGoogle Scholar
  8. Atkinson JP, Farries T (1987) Separation of self from non-self in the complement system. Immunol Today 8(7–8):212–215PubMedCrossRefGoogle Scholar
  9. Barnum SR (2015) C4a: an anaphylatoxin in name only. J Innate Immun 7(4):333–339PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berends ET, Dekkers JF, Nijland R, Kuipers A, Soppe JA, van Strijp JA, Rooijakkers SH (2013) Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol 15(12):1955–1968PubMedCrossRefGoogle Scholar
  11. Berends ET, Mohan S, Miellet WR, Ruyken M, Rooijakkers SH (2015) Contribution of the complement Membrane Attack Complex to the bactericidal activity of human serum. Mol Immunol 65(2):328–335PubMedCrossRefGoogle Scholar
  12. Biryukov S, Stoute JA (2014) Complement activation in malaria: friend or foe? Trends Mol Med 20(5):293–301CrossRefPubMedGoogle Scholar
  13. Blatt AZ, Pathan S, Ferreira VP (2016) Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev 274(1):172–190PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bohlson SS, Fraser DA, Tenner AJ (2007) Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 44(1–3):33–43PubMedCrossRefGoogle Scholar
  15. Bokisch VA, Muller-Eberhard HJ (1970) Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J Clin Invest 49(12):2427–2436PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bokisch VA, Sobel AT (1974) Receptor for the fourth component of complement on human B lymphocytes and cultured human lymphoblastoid cells. J Exp Med 140(5):1336–1347PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bordet J et al (1898) Sur l’agglutination et la dissolution des globules rouges par le serum des animaux injcties de sang defibrine. Ann Inst Pasteur 12:688–695Google Scholar
  18. Bosmann M (2016) Compendium of inflammatory diseases. Springer, Basel, pp 339–349CrossRefGoogle Scholar
  19. Bosmann M, Haggadone MD, Zetoune FS, Sarma JV, Ward PA (2013) The interaction between C5a and both C5aR and C5L2 receptors is required for production of G-CSF during acute inflammation. Eur J Immunol 43(7):1907–1913PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bossi F, Fischetti F, Pellis V, Bulla R, Ferrero E, Mollnes TE, Regoli D, Tedesco F (2004) Platelet-activating factor and kinin-dependent vascular leakage as a novel functional activity of the soluble terminal complement complex. J Immunol 173(11):6921–6927PubMedCrossRefGoogle Scholar
  21. Brodsky-Doyle B, Leonard KR, Reid KB (1976) Circular-dichroism and electron-microscopy studies of human subcomponent C1q before and after limited proteolysis by pepsin. Biochem J 159(2):279–286PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cain SA, Monk PN (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem 277(9):7165–7169PubMedCrossRefGoogle Scholar
  23. Campbell WD, Lazoura E, Okada N, Okada H (2002) Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N. Microbiol Immunol 46(2):131–134PubMedCrossRefGoogle Scholar
  24. Caras IW, Weddell GN (1989) Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment. Science 243(4895):1196–1198PubMedCrossRefGoogle Scholar
  25. Carter RH, Fearon DT (1992) CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256(5053):105–107PubMedCrossRefGoogle Scholar
  26. Coulthard LG, Woodruff TM (2015) Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol 194(8):3542–3548PubMedCrossRefGoogle Scholar
  27. Crass T, Raffetseder U, Martin U, Grove M, Klos A, Kohl J, Bautsch W (1996) Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. Eur J Immunol 26(8):1944–1950PubMedCrossRefGoogle Scholar
  28. Croker DE, Halai R, Kaeslin G, Wende E, Fehlhaber B, Klos A, Monk PN, Cooper MA (2014) C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and beta-arrestin recruitment. Immunol Cell Biol 92(7):631–639PubMedCrossRefGoogle Scholar
  29. Davis AE III, Lu F, Mejia P (2010) C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 104(5):886–893PubMedPubMedCentralGoogle Scholar
  30. Degn SE, Hansen AG, Steffensen R, Jacobsen C, Jensenius JC, Thiel S (2009) MAp 44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation. J Immunol 183(11):7371–7378PubMedCrossRefGoogle Scholar
  31. Degn SE, Thiel S, Nielsen O, Hansen AG, Steffensen R, Jensenius JC (2011) MAp 19, the alternative splice product of the MASP2 gene. J Immunol Methods 373(1–2):89–101PubMedCrossRefGoogle Scholar
  32. Delcayre AX, Salas F, Mathur S, Kovats K, Lotz M, Lernhardt W (1991) Epstein Barr virus/complement C3d receptor is an interferon alpha receptor. EMBO J 10(4):919–926PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271(5247):348–350PubMedCrossRefGoogle Scholar
  34. Devalet B, Mullier F, Chatelain B, Dogne JM, Chatelain C (2015) Pathophysiology, diagnosis, and treatment of paroxysmal nocturnal hemoglobinuria: a review. Eur J Haematol 95(3):190–198PubMedCrossRefGoogle Scholar
  35. Dodds AW, Ren XD, Willis AC, Law SK (1996) The reaction mechanism of the internal thioester in the human complement component C4. Nature 379(6561):177–179PubMedCrossRefGoogle Scholar
  36. Drickamer K (1992) Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360(6400):183–186PubMedCrossRefGoogle Scholar
  37. Dumestre-Perard C, Lamy B, Aldebert D, Lemaire-Vieille C, Grillot R, Brion JP, Gagnon J, Cesbron JY (2008) Aspergillus conidia activate the complement by the mannan-binding lectin C2 bypass mechanism. J Immunol 181(10):7100–7105PubMedCrossRefGoogle Scholar
  38. Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K (2003) Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol 171(11):6105–6111PubMedCrossRefGoogle Scholar
  39. Duus K, Hansen EW, Tacnet P, Frachet P, Arlaud GJ, Thielens NM, Houen G (2010a) Direct interaction between CD91 and C1q. FEBS J 277(17):3526–3537PubMedCrossRefGoogle Scholar
  40. Duus K, Thielens NM, Lacroix M, Tacnet P, Frachet P, Holmskov U, Houen G (2010b) CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site. FEBS J 277(23):4956–4964PubMedCrossRefGoogle Scholar
  41. Eberhardt HU, Buhlmann D, Hortschansky P, Chen Q, Bohm S, Kemper MJ, Wallich R, Hartmann A, Hallstrom T, Zipfel PF, Skerka C (2013) Human factor H-related protein 2 (CFHR2) regulates complement activation. PLoS One 8(11):e78617PubMedPubMedCentralCrossRefGoogle Scholar
  42. Egan ES, Jiang RHY, Moechtar MA, Barteneva NS, Weekes MP, Nobre LV, Gygi SP, Paulo JA, Frantzreb C, Tani Y, Takahashi J, Watanabe S, Goldberg J, Paul AS, Brugnara C, Root DE, Wiegand RC, Doench JG, Duraisingh MT (2015) A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science 348(6235):711–714PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ehlers MR (2000) CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect 2(3):289–294PubMedCrossRefGoogle Scholar
  44. Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, Gustafson E, Hong J, Kozarcanin H, Magnusson PU, Huber-Lang M, Garred P, Nilsson B (2016) Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev 274(1):245–269PubMedCrossRefGoogle Scholar
  45. Erdei A, Sandor N, Macsik-Valent B, Lukacsi S, Kremlitzka M, Bajtay Z (2016) The versatile functions of complement C3-derived ligands. Immunol Rev 274(1):127–140PubMedCrossRefGoogle Scholar
  46. Falgarone G, Chiocchia G (2009) Chapter 8: Clusterin: a multifacet protein at the crossroad of inflammation and autoimmunity. Adv Cancer Res 104:139–170PubMedCrossRefGoogle Scholar
  47. Fallman M, Andersson R, Andersson T (1993) Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 151(1):330–338PubMedGoogle Scholar
  48. Fearon DT (1978) Regulation by membrane sialic acid of beta1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci U S A 75(4):1971–1975PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fearon DT (1979) Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A 76(11):5867–5871PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fearon DT, Austen KF (1975) Properdin: binding to C3b and stabilization of the C3b-dependent C3 convertase. J Exp Med 142(4):856–863PubMedCrossRefGoogle Scholar
  51. Ferreira VP, Pangburn MK, Cortes C (2010) Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol 47(13):2187–2197PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fischer MB, Goerg S, Shen L, Prodeus AP, Goodnow CC, Kelsoe G, Carroll MC (1998) Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280(5363):582–585PubMedCrossRefGoogle Scholar
  53. Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M (1989) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264(36):21522–21528PubMedGoogle Scholar
  54. Fujita T (2002) Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2(5):346–353PubMedCrossRefGoogle Scholar
  55. Fukui A, Yuasa-Nakagawa T, Murakami Y, Funami K, Kishi N, Matsuda T, Fujita T, Seya T, Nagasawa S (2002) Mapping of the sites responsible for factor I-cofactor activity for cleavage of C3b and C4b on human C4b-binding protein (C4bp) by deletion mutagenesis. J Biochem 132(5):719–728PubMedCrossRefGoogle Scholar
  56. Gagnon J (1984) Structure and activation of complement components C2 and factor B. Philos Trans R Soc Lond Ser B Biol Sci 306(1129):301–309CrossRefGoogle Scholar
  57. Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736PubMedCrossRefGoogle Scholar
  58. Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO (2016) A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 274(1):74–97PubMedCrossRefGoogle Scholar
  59. Gelfand MC, Frank MM, Green I (1975) A receptor for the third component of complement in the human renal glomerulus. J Exp Med 142(4):1029–1034PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ghebrehiwet B, Peerschke EI (2004) Role of C1q and C1q receptors in the pathogenesis of systemic lupus erythematosus. Curr Dir Autoimmun 7:87–97PubMedCrossRefGoogle Scholar
  61. Ghebrehiwet B, Medicus RG, Muller-Eberhard HJ (1979) Potentiation of antiboty-dependent cell-mediated cytotoxicity by target cell-bound C3b. J Immunol 123(3):1285–1288PubMedGoogle Scholar
  62. Ghebrehiwet B, Silverberg M, Kaplan AP (1981) Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 153(3):665–676PubMedCrossRefGoogle Scholar
  63. Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP (1983) Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 71(5):1450–1456PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ghebrehiwet B, Habicht GS, Beck G (1990) Interaction of C1q with its receptor on cultured cell lines induces an anti-proliferative response. Clin Immunol Immunopathol 54(1):148–160PubMedCrossRefGoogle Scholar
  65. Ghebrehiwet B, Lim BL, Kumar R, Feng X, Peerschke EI (2001) gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection. Immunol Rev 180:65–77PubMedCrossRefGoogle Scholar
  66. Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192(12):1797–1808PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gigli I, Fujita T, Nussenzweig V (1979) Modulation of the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator. Proc Natl Acad Sci U S A 76(12):6596–6600PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gjelstrup LC, Boesen T, Kragstrup TW, Jorgensen A, Klein NJ, Thiel S, Deleuran BW, Vorup-Jensen T (2010) Shedding of large functionally active CD11/CD18 Integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. J Immunol 185(7):4154–4168PubMedCrossRefGoogle Scholar
  69. Gorski JP, Hugli TE, Muller-Eberhard HJ (1979) C4a: the third anaphylatoxin of the human complement system. Proc Natl Acad Sci U S A 76(10):5299–5302PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gros P, Milder FJ, Janssen BJ (2008) Complement driven by conformational changes. Nat Rev Immunol 8(1):48–58CrossRefPubMedGoogle Scholar
  71. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852PubMedCrossRefGoogle Scholar
  72. Hackam DJ, Rotstein OD, Zhang WJ, Demaurex N, Woodside M, Tsai O, Grinstein S (1997) Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-atpases. J Biol Chem 272(47):29810–29820PubMedCrossRefGoogle Scholar
  73. Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317(5844):1552–1554PubMedCrossRefGoogle Scholar
  74. Hamad OA, Ekdahl KN, Nilsson PH, Andersson J, Magotti P, Lambris JD, Nilsson B (2008) Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost 6(8):1413–1421PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hara T, Kuriyama S, Kiyohara H, Nagase Y, Matsumoto M, Seya T (1992) Soluble forms of membrane cofactor protein (CD46, MCP) are present in plasma, tears, and seminal fluid in normal subjects. Clin Exp Immunol 89(3):490–494PubMedPubMedCentralCrossRefGoogle Scholar
  76. Harboe M, Ulvund G, Vien L, Fung M, Mollnes TE (2004) The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol 138(3):439–446PubMedPubMedCentralCrossRefGoogle Scholar
  77. Harrison RA, Farries TC, Northrop FD, Lachmann PJ, Davis AE (1988) Structure of C3f, a small peptide specifically released during inactivation of the third component of complement. Complement 5(1):27–32PubMedCrossRefGoogle Scholar
  78. Heinen S, Hartmann A, Lauer N, Wiehl U, Dahse HM, Schirmer S, Gropp K, Enghardt T, Wallich R, Halbich S, Mihlan M, Schlotzer-Schrehardt U, Zipfel PF, Skerka C (2009) Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood 114(12):2439–2447PubMedCrossRefGoogle Scholar
  79. Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren CM (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124(5):915–927PubMedCrossRefGoogle Scholar
  80. Hesketh TR, Dourmashkin RR, Payne SN, Humphrey JH, Lachmann PJ (1971) Lesions due to complement in lipid membranes. Nature 233(5322):620–623PubMedCrossRefGoogle Scholar
  81. Hosszu KK, Valentino A, Vinayagasundaram U, Vinayagasundaram R, Joyce MG, Ji Y, Peerschke EI, Ghebrehiwet B (2012) DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood 120(6):1228–1236PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hostetter MK, Krueger RA, Schmeling DJ (1984) The biochemistry of opsonization: central role of the reactive thiolester of the third component of complement. J Infect Dis 150(5):653–661PubMedCrossRefGoogle Scholar
  83. Hourcade DE (2006) The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem 281(4):2128–2132PubMedCrossRefGoogle Scholar
  84. Hsu WC, Yang FC, Lin CH, Hsieh SL, Chen NJ (2014) C5L2 is required for C5a-triggered receptor internalization and ERK signaling. Cell Signal 26(7):1409–1419PubMedCrossRefGoogle Scholar
  85. Huber-Lang M, Younkin EM, Sarma JV, Riedemann N, McGuire SR, Lu KT, Kunkel R, Younger JG, Zetoune FS, Ward PA (2002) Generation of C5a by phagocytic cells. Am J Pathol 161(5):1849–1859PubMedPubMedCentralCrossRefGoogle Scholar
  86. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12(6):682–687CrossRefPubMedGoogle Scholar
  87. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56(4):739–744PubMedCrossRefGoogle Scholar
  88. Iida K, Nussenzweig V (1981) Complement receptor is an inhibitor of the complement cascade. J Exp Med 153(5):1138–1150PubMedCrossRefGoogle Scholar
  89. Ingram G, Hakobyan S, Robertson NP, Morgan BP (2010) Elevated plasma C4a levels in multiple sclerosis correlate with disease activity. J Neuroimmunol 223(1–2):124–127PubMedCrossRefGoogle Scholar
  90. Jozsi M, Zipfel PF (2008) Factor H family proteins and human diseases. Trends Immunol 29(8):380–387PubMedCrossRefGoogle Scholar
  91. Kang YS, Do Y, Lee HK, Park SH, Cheong C, Lynch RM, Loeffler JM, Steinman RM, Park CG (2006) A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell 125(1):47–58PubMedCrossRefGoogle Scholar
  92. Kanse SM, Gallenmueller A, Zeerleder S, Stephan F, Rannou O, Denk S, Etscheid M, Lochnit G, Krueger M, Huber-Lang M (2012) Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J Immunol 188(6):2858–2865PubMedCrossRefGoogle Scholar
  93. Kemper C (2016) Targeting the Dark Horse of complement: the first generation of functionally selective C5aR2 ligands. Immunol Cell Biol 94(8):717–718PubMedCrossRefGoogle Scholar
  94. Kemper C, Hourcade DE (2008) Properdin: new roles in pattern recognition and target clearance. Mol Immunol 45(16):4048–4056PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kemper C, Pangburn MK, Fishelson Z (2014) Complement nomenclature 2014. Mol Immunol 61(2):56–58PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kilgore KS, Schmid E, Shanley TP, Flory CM, Maheswari V, Tramontini NL, Cohen H, Ward PA, Friedl HP, Warren JS (1997) Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol 150(6):2019–2031PubMedPubMedCentralGoogle Scholar
  97. Kim DD, Song WC (2006) Membrane complement regulatory proteins. Clin Immunol 118(2–3):127–136PubMedCrossRefGoogle Scholar
  98. Kim KH, Choi BK, Song KM, Cha KW, Kim YH, Lee H, Han IS, Kwon BS (2013) CRIg signals induce anti-intracellular bacterial phagosome activity in a chloride intracellular channel 3-dependent manner. Eur J Immunol 43(3):667–678PubMedCrossRefGoogle Scholar
  99. Kinoshita T, Takata Y, Kozono H, Takeda J, Hong KS, Inoue K (1988) C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J Immunol 141(11):3895–3901PubMedGoogle Scholar
  100. Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA (1987) Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50(2):193–202PubMedCrossRefGoogle Scholar
  101. Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7(3):345–355CrossRefPubMedGoogle Scholar
  102. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Kohl J (2009) The role of the anaphylatoxins in health and disease. Mol Immunol 46(14):2753–2766PubMedPubMedCentralCrossRefGoogle Scholar
  103. Klos A, Wende E, Wareham KJ, Monk PN (2013) International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 65(1):500–543CrossRefPubMedGoogle Scholar
  104. Knobel HR, Villiger W, Isliker H (1975) Chemical analysis and electron microscopy studies of human C1q prepared by different methods. Eur J Immunol 5(1):78–82PubMedCrossRefGoogle Scholar
  105. Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158(10):4525–4528PubMedGoogle Scholar
  106. Krych-Goldberg M, Atkinson JP (2001) Structure-function relationships of complement receptor type 1. Immunol Rev 180:112–122CrossRefPubMedGoogle Scholar
  107. Kuhlman M, Joiner K, Ezekowitz RA (1989) The human mannose-binding protein functions as an opsonin. J Exp Med 169(5):1733–1745PubMedCrossRefGoogle Scholar
  108. Kurosawa S, Stearns-Kurosawa DJ (2014) Complement, thrombotic microangiopathy and disseminated intravascular coagulation. J Intensive Care 2(1):65PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lachmann PJ (2009) The amplification loop of the complement pathways. Adv Immunol 104:115–149PubMedCrossRefGoogle Scholar
  110. Lachmann PJ, Muller-Eberhard HJ (1968) The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement. J Immunol 100(4):691–698PubMedGoogle Scholar
  111. Lachmann PJ, Nicol P (1973) Reaction mechanism of the alternative pathway of complement fixation. Lancet 1(7801):465–467PubMedCrossRefGoogle Scholar
  112. Lachmann PJ, Kay AB, Thompson RA (1970) The chemotactic activity for neutrophil and eosinophil leucocytes of the trimolecular complex of the fifth, sixth and seventh components of human complement (C567) prepared in free solution by the ‘reactive lysis’ procedure. Immunology 19(6):895–899PubMedPubMedCentralGoogle Scholar
  113. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7(5):216PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lay WH, Nussenzweig V (1968) Receptors for complement of leukocytes. J Exp Med 128(5):991–1009PubMedPubMedCentralCrossRefGoogle Scholar
  115. Lehto T, Meri S (1993) Interactions of soluble CD59 with the terminal complement complexes. CD59 and C9 compete for a nascent epitope on C8. J Immunol 151(9):4941–4949PubMedGoogle Scholar
  116. Liszewski MK, Atkinson JP (2015) Complement regulator CD46: genetic variants and disease associations. Hum Genomics 9:7PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81PubMedCrossRefGoogle Scholar
  118. Lozada C, Levin RI, Huie M, Hirschhorn R, Naime D, Whitlow M, Recht PA, Golden B, Cronstein BN (1995) Identification of C1q as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intercellular and vascular cell adhesion molecules 1. Proc Natl Acad Sci U S A 92(18):8378–8382PubMedPubMedCentralCrossRefGoogle Scholar
  119. Lueck K, Wasmuth S, Williams J, Hughes TR, Morgan BP, Lommatzsch A, Greenwood J, Moss SE, Pauleikhoff D (2011) Sub-lytic C5b-9 induces functional changes in retinal pigment epithelial cells consistent with age-related macular degeneration. Eye (Lond) 25(8):1074–1082CrossRefGoogle Scholar
  120. Ma W, Rai V, Hudson BI, Song F, Schmidt AM, Barile GR (2012) RAGE binds C1q and enhances C1q-mediated phagocytosis. Cell Immunol 274(1–2):72–82PubMedCrossRefGoogle Scholar
  121. Ma YJ, Hein E, Munthe-Fog L, Skjoedt MO, Bayarri-Olmos R, Romani L, Garred P (2015) Soluble collectin-12 (CL-12) is a pattern recognition molecule initiating complement activation via the alternative pathway. J Immunol 195(7):3365–3373PubMedCrossRefGoogle Scholar
  122. Malhotra V, Hogg N, Sim RB (1986) Ligand binding by the p150,95 antigen of U937 monocytic cells: properties in common with complement receptor type 3 (CR3). Eur J Immunol 16(9):1117–1123PubMedCrossRefGoogle Scholar
  123. Malhotra R, Thiel S, Reid KB, Sim RB (1990) Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med 172(3):955–959PubMedCrossRefGoogle Scholar
  124. Manthey HD, Woodruff TM, Taylor SM, Monk PN (2009) Complement component 5a (C5a). Int J Biochem Cell Biol 41(11):2114–2117PubMedCrossRefGoogle Scholar
  125. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28(4):184–192PubMedPubMedCentralCrossRefGoogle Scholar
  126. Matsushita M (2013) Ficolins in complement activation. Mol Immunol 55(1):22–26PubMedCrossRefGoogle Scholar
  127. Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 165(5):2637–2642PubMedCrossRefGoogle Scholar
  128. Matthews KW, Mueller-Ortiz SL, Wetsel RA (2004) Carboxypeptidase N: a pleiotropic regulator of inflammation. Mol Immunol 40(11):785–793PubMedPubMedCentralCrossRefGoogle Scholar
  129. McCall-Culbreath KD, Li Z, Zutter MM (2008) Crosstalk between the alpha2beta1 integrin and c-met/HGF-R regulates innate immunity. Blood 111(7):3562–3570PubMedPubMedCentralCrossRefGoogle Scholar
  130. McDonald JF, Nelsestuen GL (1997) Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. Biochemistry 36(24):7464–7473PubMedCrossRefGoogle Scholar
  131. McGreal EP, Ikewaki N, Akatsu H, Morgan BP, Gasque P (2002) Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol 168(10):5222–5232PubMedCrossRefGoogle Scholar
  132. McRae JL, Duthy TG, Griggs KM, Ormsby RJ, Cowan PJ, Cromer BA, McKinstry WJ, Parker MW, Murphy BF, Gordon DL (2005) Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein. J Immunol 174(10):6250–6256PubMedCrossRefGoogle Scholar
  133. Medicus RG, Gotze O, Muller-Eberhard HJ (1976a) Alternative pathway of complement: recruitment of precursor properdin by the labile C3/C5 convertase and the potentiation of the pathway. J Exp Med 144(4):1076–1093PubMedCrossRefGoogle Scholar
  134. Medicus RG, Gotze O, Muller-Eberhard HJ (1976b) The serine protease nature of the C3 and C5 convertases of the classical and alternative complement pathways. Scand J Immunol 5(9):1049–1055PubMedCrossRefGoogle Scholar
  135. Medof ME, Nussenzweig V (1984) Control of the function of substrate-bound C4b-C3b by the complement receptor Cr1. J Exp Med 159(6):1669–1685PubMedCrossRefGoogle Scholar
  136. Megyeri M, Harmat V, Major B, Vegh A, Balczer J, Heja D, Szilagyi K, Datz D, Pal G, Zavodszky P, Gal P, Dobo J (2013) Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway. J Biol Chem 288(13):8922–8934PubMedPubMedCentralCrossRefGoogle Scholar
  137. Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ (1990) Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 71(1):1–9PubMedPubMedCentralGoogle Scholar
  138. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part I–molecular mechanisms of activation and regulation. Front Immunol 6:262PubMedPubMedCentralGoogle Scholar
  139. Mikesch JH, Buerger H, Simon R, Brandt B (2006) Decay-accelerating factor (CD55): a versatile acting molecule in human malignancies. Biochim Biophys Acta 1766(1):42–52PubMedGoogle Scholar
  140. Milis L, Morris CA, Sheehan MC, Charlesworth JA, Pussell BA (1993) Vitronectin-mediated inhibition of complement: evidence for different binding sites for C5b-7 and C9. Clin Exp Immunol 92(1):114–119PubMedPubMedCentralCrossRefGoogle Scholar
  141. Morgan BP (2016) The membrane attack complex as an inflammatory trigger. Immunobiology 221(6):747–751PubMedCrossRefGoogle Scholar
  142. Morgan BP, Dankert JR, Esser AF (1987) Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol 138(1):246–253PubMedGoogle Scholar
  143. Muller-Eberhard HJ, Polley MJ, Calcott MA (1967) Formation and functional significance of a molecular complex derived from the second and the fourth component of human complement. J Exp Med 125(2):359–380PubMedPubMedCentralCrossRefGoogle Scholar
  144. Nagasawa S, Stroud RM (1977) Cleavage of C2 by C1s into the antigenically distinct fragments C2a and C2b: demonstration of binding of C2b to C4b. Proc Natl Acad Sci U S A 74(7):2998–3001PubMedPubMedCentralCrossRefGoogle Scholar
  145. Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM (2001) The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 166(5):3231–3239PubMedCrossRefGoogle Scholar
  146. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004PubMedGoogle Scholar
  147. Newman SL, Devery-Pocius JE, Ross GD, Henson PM (1984) Phagocytosis by human monocyte-derived macrophages. Independent function of receptors for C3b (CR1) and iC3b (CR3). Complement 1(4):213–227PubMedCrossRefGoogle Scholar
  148. Newman SL, Becker S, Halme J (1985) Phagocytosis by receptors for C3b (CR1), iC3b (CR3), and IgG (Fc) on human peritoneal macrophages. J Leukoc Biol 38(2):267–278PubMedCrossRefGoogle Scholar
  149. Ni CS, Weyand NJ, Neumann C, Thomas J, So M, Astier AL (2011) The dynamic processing of CD46 intracellular domains provides a molecular rheostat for T cell activation. PLoS One 6(1):e16287CrossRefGoogle Scholar
  150. Nilsson SC, Sim RB, Lea SM, Fremeaux-Bacchi V, Blom AM (2011) Complement factor I in health and disease. Mol Immunol 48(14):1611–1620PubMedCrossRefGoogle Scholar
  151. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194(6):781–795PubMedPubMedCentralCrossRefGoogle Scholar
  152. Okinaga S, Slattery D, Humbles A, Zsengeller Z, Morteau O, Kinrade MB, Brodbeck RM, Krause JE, Choe HR, Gerard NP, Gerard C (2003) C5L2, a nonsignaling C5A binding protein. Biochemistry 42(31):9406–9415PubMedCrossRefGoogle Scholar
  153. Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249(3):974–979PubMedGoogle Scholar
  154. Paidassi H, Tacnet-Delorme P, Lunardi T, Arlaud GJ, Thielens NM, Frachet P (2008) The lectin-like activity of human C1q and its implication in DNA and apoptotic cell recognition. FEBS Lett 582(20):3111–3116PubMedCrossRefGoogle Scholar
  155. Pangburn MK, Muller-Eberhard HJ (1986) The C3 convertase of the alternative pathway of human complement. Enzymic properties of the bimolecular proteinase. Biochem J 235(3):723–730PubMedPubMedCentralCrossRefGoogle Scholar
  156. Pangburn MK, Rawal N (2002) Structure and function of complement C5 convertase enzymes. Biochem Soc Trans 30(Pt 6):1006–1010PubMedCrossRefGoogle Scholar
  157. Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1977) Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med 146(1):257–270PubMedCrossRefGoogle Scholar
  158. Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 154(3):856–867PubMedCrossRefGoogle Scholar
  159. Pangburn MK, Rawal N, Cortes C, Alam MN, Ferreira VP, Atkinson MA (2009) Polyanion-induced self-association of complement factor H. J Immunol 182(2):1061–1068PubMedPubMedCentralCrossRefGoogle Scholar
  160. Pednekar L, Pandit H, Paudyal B, Kaur A, Al-Mozaini MA, Kouser L, Ghebrehiwet B, Mitchell DA, Madan T, Kishore U (2016) Complement protein C1q interacts with DC-SIGN via its globular domain and thus may interfere with HIV-1 transmission. Front Immunol 7:600PubMedPubMedCentralGoogle Scholar
  161. Peerschke EI, Ghebrehiwet B (2014) cC1qR/CR and gC1qR/p33: observations in cancer. Mol Immunol 61(2):100–109PubMedCrossRefGoogle Scholar
  162. Peerschke EI, Reid KB, Ghebrehiwet B (1993) Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med 178(2):579–587PubMedCrossRefGoogle Scholar
  163. Pepys MB (1972) Role of complement in induction of the allergic response. Nat New Biol 237(74):157–159PubMedCrossRefGoogle Scholar
  164. Pepys MB (1974) Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J Exp Med 140(1):126–145PubMedPubMedCentralCrossRefGoogle Scholar
  165. Pfeifer PH, Brems JJ, Brunson M, Hugli TE (2000) Plasma C3a and C4a levels in liver transplant recipients: a longitudinal study. Immunopharmacology 46(2):163–174PubMedCrossRefGoogle Scholar
  166. Podack ER, Tschopp J (1984) Membrane attack by complement. Mol Immunol 21(7):589–603PubMedCrossRefGoogle Scholar
  167. Podack ER, Kolb WP, Muller-Eberhard HJ (1977) The SC5b-7 complex: formation, isolation, properties, and subunit composition. J Immunol 119(6):2024–2029PubMedGoogle Scholar
  168. Podack ER, Tschoop J, Muller-Eberhard HJ (1982) Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly. J Exp Med 156(1):268–282PubMedPubMedCentralCrossRefGoogle Scholar
  169. Podack ER, Preissner KT, Muller-Eberhard HJ (1984) Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein. Acta Pathol Microbiol Immunol Scand Suppl 284:89–96PubMedGoogle Scholar
  170. Prabagar MG, Do Y, Ryu S, Park JY, Choi HJ, Choi WS, Yun TJ, Moon J, Choi IS, Ko K, Ko K, Young SC, Cheong C, Kang YS (2013) SIGN-R1, a C-type lectin, enhances apoptotic cell clearance through the complement deposition pathway by interacting with C1q in the spleen. Cell Death Differ 20(4):535–545PubMedCrossRefGoogle Scholar
  171. Preissner KT, Podack ER, Muller-Eberhard HJ (1985) The membrane attack complex of complement: relation of C7 to the metastable membrane binding site of the intermediate complex C5b-7. J Immunol 135(1):445–451PubMedGoogle Scholar
  172. Pundir P, MacDonald CA, Kulka M (2015) The novel receptor C5aR2 is required for C5a-mediated human mast cell adhesion, migration, and proinflammatory mediator production. J Immunol 195(6):2774–2787PubMedCrossRefGoogle Scholar
  173. Ricklin D, Lambris JD (2016) Therapeutic control of complement activation at the level of the central component C3. Immunobiology 221(6):740–746PubMedCrossRefGoogle Scholar
  174. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797PubMedPubMedCentralCrossRefGoogle Scholar
  175. Roozendaal R, Carroll MC (2007) Complement receptors CD21 and CD35 in humoral immunity. Immunol Rev 219:157–166PubMedCrossRefGoogle Scholar
  176. Rosen H, Law SK (1990) The leukocyte cell surface receptor(s) for the iC3b product of complement. Curr Top Microbiol Immunol 153:99–122PubMedGoogle Scholar
  177. Ross GD, Lambris JD, Cain JA, Newman SL (1982) Generation of three different fragments of bound C3 with purified factor I or serum. I. Requirements for factor H vs CR1 cofactor activity. J Immunol 129(5):2051–2060PubMedGoogle Scholar
  178. Ruan BH, Li X, Winkler AR, Cunningham KM, Kuai J, Greco RM, Nocka KH, Fitz LJ, Wright JF, Pittman DD, Tan XY, Paulsen JE, Lin LL, Winkler DG (2010) Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-alpha production in a receptor for advanced glycation end product-dependent manner. J Immunol 185(7):4213–4222PubMedCrossRefGoogle Scholar
  179. Sadhu C, Ting HJ, Lipsky B, Hensley K, Garcia-Martinez LF, Simon SI, Staunton DE (2007) CD11c/CD18: novel ligands and a role in delayed-type hypersensitivity. J Leukoc Biol 81(6):1395–1403PubMedCrossRefGoogle Scholar
  180. Sandor N, Kristof K, Parej K, Pap D, Erdei A, Bajtay Z (2013) CR3 is the dominant phagocytotic complement receptor on human dendritic cells. Immunobiology 218(4):652–663PubMedCrossRefGoogle Scholar
  181. Sandor N, Lukacsi S, Ungai-Salanki R, Orgovan N, Szabo B, Horvath R, Erdei A, Bajtay Z (2016) CD11c/CD18 dominates adhesion of human monocytes, macrophages and dendritic cells over CD11b/CD18. PLoS One 11(9):e0163120PubMedPubMedCentralCrossRefGoogle Scholar
  182. Scharfstein J, Ferreira A, Gigli I, Nussenzweig V (1978) Human C4-binding protein. I. Isolation and characterization. J Exp Med 148(1):207–222PubMedPubMedCentralCrossRefGoogle Scholar
  183. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997PubMedGoogle Scholar
  184. Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2 Suppl 2):S41–S52PubMedPubMedCentralCrossRefGoogle Scholar
  185. Scola AM, Johswich KO, Morgan BP, Klos A, Monk PN (2009) The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol 46(6):1149–1162PubMedPubMedCentralCrossRefGoogle Scholar
  186. Scribner DJ, Fahrney D (1976) Neutrophil receptors for IgG and complement: their roles in the attachment and ingestion phases of phagocytosis. J Immunol 116(4):892–897PubMedGoogle Scholar
  187. Selander B, Martensson U, Weintraub A, Holmstrom E, Matsushita M, Thiel S, Jensenius JC, Truedsson L, Sjoholm AG (2006) Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J Clin Invest 116(5):1425–1434PubMedPubMedCentralCrossRefGoogle Scholar
  188. Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7:10587PubMedPubMedCentralCrossRefGoogle Scholar
  189. Sessa L, Gatti E, Zeni F, Antonelli A, Catucci A, Koch M, Pompilio G, Fritz G, Raucci A, Bianchi ME (2014) The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One 9(1):e86903PubMedPubMedCentralCrossRefGoogle Scholar
  190. Shingu M, Nonaka S, Nishimukai H, Nobunaga M, Kitamura H, Tomo-Oka K (1992) Activation of complement in normal serum by hydrogen peroxide and hydrogen peroxide-related oxygen radicals produced by activated neutrophils. Clin Exp Immunol 90(1):72–78PubMedPubMedCentralCrossRefGoogle Scholar
  191. Shoemaker RC, Giclas PC, Crowder C, House D, Glovsky MM (2008) Complement split products C3a and C4a are early markers of acute lyme disease in tick bite patients in the United States. Int Arch Allergy Immunol 146(3):255–261PubMedCrossRefGoogle Scholar
  192. Sim RB, Reboul A, Arlaud GJ, Villiers CL, Colomb MG (1979) Interaction of 125I-labelled complement subcomponents C-1r and C-1s with protease inhibitors in plasma. FEBS Lett 97(1):111–115PubMedCrossRefGoogle Scholar
  193. Skjoedt MO, Hummelshoj T, Palarasah Y, Honore C, Koch C, Skjodt K, Garred P (2010) A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. J Biol Chem 285(11):8234–8243PubMedPubMedCentralCrossRefGoogle Scholar
  194. Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, Tsokos GC, Stoute JA (2010) Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog 6(6):e1000968PubMedPubMedCentralCrossRefGoogle Scholar
  195. Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE (2007) Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 179(4):2600–2608PubMedCrossRefGoogle Scholar
  196. Sprokholt JK, Overmars RJ, Geijtenbeek TBH (2016) “DC-SIGN in infection and immunity”. C-type lectin receptors in immunity. Springer, Japan, pp 129–150CrossRefGoogle Scholar
  197. Steckel EW, Welbaum BE, Sodetz JM (1983) Evidence of direct insertion of terminal complement proteins into cell membrane bilayers during cytolysis. Labeling by a photosensitive membrane probe reveals a major role for the eighth and ninth components. J Biol Chem 258(7):4318–4324PubMedGoogle Scholar
  198. Steinberger P, Szekeres A, Wille S, Stockl J, Selenko N, Prager E, Staffler G, Madic O, Stockinger H, Knapp W (2002) Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning. J Leukoc Biol 71(1):133–140PubMedGoogle Scholar
  199. Stoute JA (2011) Complement receptor 1 and malaria. Cell Microbiol 13(10):1441–1450PubMedCrossRefGoogle Scholar
  200. Stricker RB, Savely VR, Motanya NC, Giclas PC (2009) Complement split products c3a and c4a in chronic lyme disease. Scand J Immunol 69(1):64–69PubMedCrossRefGoogle Scholar
  201. Strickland DK, Au DT, Cunfer P, Muratoglu SC (2014) Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 34(3):487–498PubMedPubMedCentralCrossRefGoogle Scholar
  202. Szebeni J (2007) The complement system: novel roles in health and disease. Springer, New YorkGoogle Scholar
  203. Takata Y, Kinoshita T, Kozono H, Takeda J, Tanaka E, Hong K, Inoue K (1987) Covalent association of C3b with C4b within C5 convertase of the classical complement pathway. J Exp Med 165(6):1494–1507PubMedCrossRefGoogle Scholar
  204. Taylor RP, Ferguson PJ, Martin EN, Cooke J, Greene KL, Grinspun K, Guttman M, Kuhn S (1997) Immune complexes bound to the primate erythrocyte complement receptor (CR1) via anti-CR1 mAbs are cleared simultaneously with loss of CR1 in a concerted reaction in a rhesus monkey model. Clin Immunol Immunopathol 82(1):49–59PubMedCrossRefGoogle Scholar
  205. Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A (1997) The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 185(9):1619–1627PubMedPubMedCentralCrossRefGoogle Scholar
  206. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126(Pt 13):2903–2913PubMedCrossRefGoogle Scholar
  207. Tsuruta T, Yamamoto T, Matsubara S, Nagasawa S, Tanase S, Tanaka J, Takagi K, Kambara T (1993) Novel function of C4a anaphylatoxin. Release from monocytes of protein which inhibits monocyte chemotaxis. Am J Pathol 142(6):1848–1857PubMedPubMedCentralGoogle Scholar
  208. Van Lith LH, Oosterom J, Van EA, Zaman GJ (2009) C5a-stimulated recruitment of beta-arrestin2 to the nonsignaling 7-transmembrane decoy receptor C5L2. J Biomol Screen 14(9):1067–1075PubMedCrossRefGoogle Scholar
  209. Verneret M, Tacnet-Delorme P, Osman R, Awad R, Grichine A, Kleman JP, Frachet P (2014) Relative contribution of c1q and apoptotic cell-surface calreticulin to macrophage phagocytosis. J Innate Immun 6(4):426–434PubMedCrossRefGoogle Scholar
  210. Vijayan S, Asare Y, Grommes J, Soehnlein O, Lutgens E, Shagdarsuren G, Togtokh A, Jacobs MJ, Fischer JW, Bernhagen J, Weber C, Schober A, Shagdarsuren E (2014) High expression of C5L2 correlates with high proinflammatory cytokine expression in advanced human atherosclerotic plaques. Am J Pathol 184(7):2123–2133PubMedCrossRefGoogle Scholar
  211. Vogt W, Dames W, Schmidt G, Dieminger L (1977) Complement activation by the properdin system: formation of a stoichiometric. C3 cleaving complex of properdin factor B with C36. Immunochemistry 14(3):201–205PubMedCrossRefGoogle Scholar
  212. Wang C, Barbashov S, Jack RM, Barrett T, Weller PF, Nicholson-Weller A (1995) Hemolytically inactive C5b67 complex: an agonist of polymorphonuclear leukocytes. Blood 85(9):2570–2578PubMedGoogle Scholar
  213. Wang R, Lu B, Gerard C, Gerard NP (2013) Disruption of the complement anaphylatoxin receptor C5L2 exacerbates inflammation in allergic contact dermatitis. J Immunol 191(8):4001–4009PubMedPubMedCentralCrossRefGoogle Scholar
  214. Weiler JM, Daha MR, Austen KF, Fearon DT (1976) Control of the amplification convertase of complement by the plasma protein beta1H. Proc Natl Acad Sci U S A 73(9):3268–3272PubMedPubMedCentralCrossRefGoogle Scholar
  215. Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360(6400):127–134PubMedCrossRefGoogle Scholar
  216. Werfel T, Oppermann M, Butterfield JH, Begemann G, Elsner J, Gotze O, Zwirner J (1996) The human mast cell line HMC-1 expresses C5a receptors and responds to C5a but not to C5a(desArg). Scand J Immunol 44(1):30–36PubMedCrossRefGoogle Scholar
  217. Whaley K, Ruddy S (1976) Modulation of C3b hemolytic activity by a plasma protein distinct from C3b inactivator. Science 193(4257):1011–1013PubMedCrossRefGoogle Scholar
  218. Wiegner R, Chakraborty S, Huber-Lang M (2016) Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology 221(10):1073–1079PubMedCrossRefGoogle Scholar
  219. Wiesmann C, Katschke KJ, Yin J, Helmy KY, Steffek M, Fairbrother WJ, McCallum SA, Embuscado L, DeForge L, Hass PE, van Lookeren CM (2006) Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444(7116):217–220PubMedCrossRefGoogle Scholar
  220. Wright SD, Silverstein SC (1982) Tumor-promoting phorbol esters stimulate C3b and C3b’ receptor-mediated phagocytosis in cultured human monocytes. J Exp Med 156(4):1149–1164PubMedCrossRefGoogle Scholar
  221. Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P (2009) Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol 10(7):728–733PubMedPubMedCentralCrossRefGoogle Scholar
  222. Xu S, Wang J, Wang JH, Springer TA (2017) Distinct recognition of complement iC3b by integrins alphaXbeta2 and alphaMbeta2. Proc Natl Acad Sci U S A 114(13):3403–3408PubMedPubMedCentralCrossRefGoogle Scholar
  223. Yoon SH, Fearon DT (1985) Characterization of a soluble form of the C3b/C4b receptor (CR1) in human plasma. J Immunol 134(5):3332–3338PubMedGoogle Scholar
  224. Zhao Y, Xu H, Yu W, Xie BD (2014) Complement anaphylatoxin C4a inhibits C5a-induced neointima formation following arterial injury. Mol Med Rep 10(1):45–52PubMedPubMedCentralCrossRefGoogle Scholar
  225. Zhao L, Shao S, Chen Y, Sun X, Sun R, Huang J, Zhan B, Zhu X (2017) Trichinella spiralis calreticulin binds human complement C1q as an immune evasion strategy. Front Immunol 8:636PubMedPubMedCentralCrossRefGoogle Scholar
  226. Zipfel PF, Skerka C (1999) FHL-1/reconectin: a human complement and immune regulator with cell-adhesive function. Immunol Today 20(3):135–140PubMedCrossRefGoogle Scholar
  227. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9(10):729–740PubMedPubMedCentralCrossRefGoogle Scholar
  228. Zutter MM, Edelson BT (2007) The alpha2beta1 integrin: a novel collectin/C1q receptor. Immunobiology 212(4–5):343–353PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Penn State College of MedicineHersheyUSA

Personalised recommendations