Skip to main content

Abstract

The complement system consists of a complex cascade of zymogens that leads to the formation of opsonins (predominantly C3b and C4b) that promote phagocytosis and the insertion of the membrane attack complex into the membranes, resulting in lysis. It constitutes one of the first lines of defense against pathogens as it does not require prior maturation or adaptation. The complement system also exerts an important influence on the adaptive immune response by acting synergistically with antibodies as well as promoting B- and T-cell stimulation. Although traditionally we have learned of three activation pathways, the reality is that there are multiple activation mechanisms provided by crosstalk with other systems such as the coagulation system. In order to prevent autologous attack, the complement system has many regulatory points that are intended to prevent autologous damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Shrive AK, Greenhough TJ, Volanakis JE (2001) Topology and structure of the C1q-binding site on C-reactive protein. J Immunol 166(6):3998–4004

    Article  PubMed  CAS  Google Scholar 

  • Alba-Dominguez M, Lopez-Lera A, Garrido S, Nozal P, Gonzalez-Granado I, Melero J, Soler-Palacin P, Camara C, Lopez-Trascasa M (2012) Complement factor I deficiency: a not so rare immune defect: characterization of new mutations and the first large gene deletion. Orphanet J Rare Dis 7:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287(13):10210–10222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, Bruckner UB, Nilsson B, Gebhard F, Lambris JD, Huber-Lang M (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185(9):5628–5636

    Article  PubMed  CAS  Google Scholar 

  • Ames RS, Li Y, Sarau HM, Nuthulaganti P, Foley JJ, Ellis C, Zeng Z, Su K, Jurewicz AJ, Hertzberg RP, Bergsma DJ, Kumar C (1996) Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem 271(34):20231–20234

    Article  PubMed  CAS  Google Scholar 

  • Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med 38:175–194

    Article  PubMed  CAS  Google Scholar 

  • Asokan R, Banda NK, Szakonyi G, Chen XS, Holers VM (2013) Human complement receptor 2 (CR2/CD21) as a receptor for DNA: implications for its roles in the immune response and the pathogenesis of systemic lupus erythematosus (SLE). Mol Immunol 53(1–2):99–110

    Article  PubMed  CAS  Google Scholar 

  • Atkinson JP, Farries T (1987) Separation of self from non-self in the complement system. Immunol Today 8(7–8):212–215

    Article  PubMed  CAS  Google Scholar 

  • Barnum SR (2015) C4a: an anaphylatoxin in name only. J Innate Immun 7(4):333–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berends ET, Dekkers JF, Nijland R, Kuipers A, Soppe JA, van Strijp JA, Rooijakkers SH (2013) Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol 15(12):1955–1968

    Article  PubMed  CAS  Google Scholar 

  • Berends ET, Mohan S, Miellet WR, Ruyken M, Rooijakkers SH (2015) Contribution of the complement Membrane Attack Complex to the bactericidal activity of human serum. Mol Immunol 65(2):328–335

    Article  PubMed  CAS  Google Scholar 

  • Biryukov S, Stoute JA (2014) Complement activation in malaria: friend or foe? Trends Mol Med 20(5):293–301

    Article  PubMed  CAS  Google Scholar 

  • Blatt AZ, Pathan S, Ferreira VP (2016) Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev 274(1):172–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohlson SS, Fraser DA, Tenner AJ (2007) Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 44(1–3):33–43

    Article  PubMed  CAS  Google Scholar 

  • Bokisch VA, Muller-Eberhard HJ (1970) Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J Clin Invest 49(12):2427–2436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bokisch VA, Sobel AT (1974) Receptor for the fourth component of complement on human B lymphocytes and cultured human lymphoblastoid cells. J Exp Med 140(5):1336–1347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bordet J et al (1898) Sur l’agglutination et la dissolution des globules rouges par le serum des animaux injcties de sang defibrine. Ann Inst Pasteur 12:688–695

    Google Scholar 

  • Bosmann M (2016) Compendium of inflammatory diseases. Springer, Basel, pp 339–349

    Book  Google Scholar 

  • Bosmann M, Haggadone MD, Zetoune FS, Sarma JV, Ward PA (2013) The interaction between C5a and both C5aR and C5L2 receptors is required for production of G-CSF during acute inflammation. Eur J Immunol 43(7):1907–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bossi F, Fischetti F, Pellis V, Bulla R, Ferrero E, Mollnes TE, Regoli D, Tedesco F (2004) Platelet-activating factor and kinin-dependent vascular leakage as a novel functional activity of the soluble terminal complement complex. J Immunol 173(11):6921–6927

    Article  PubMed  CAS  Google Scholar 

  • Brodsky-Doyle B, Leonard KR, Reid KB (1976) Circular-dichroism and electron-microscopy studies of human subcomponent C1q before and after limited proteolysis by pepsin. Biochem J 159(2):279–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cain SA, Monk PN (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem 277(9):7165–7169

    Article  PubMed  CAS  Google Scholar 

  • Campbell WD, Lazoura E, Okada N, Okada H (2002) Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N. Microbiol Immunol 46(2):131–134

    Article  PubMed  CAS  Google Scholar 

  • Caras IW, Weddell GN (1989) Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment. Science 243(4895):1196–1198

    Article  PubMed  CAS  Google Scholar 

  • Carter RH, Fearon DT (1992) CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256(5053):105–107

    Article  PubMed  CAS  Google Scholar 

  • Coulthard LG, Woodruff TM (2015) Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol 194(8):3542–3548

    Article  PubMed  CAS  Google Scholar 

  • Crass T, Raffetseder U, Martin U, Grove M, Klos A, Kohl J, Bautsch W (1996) Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. Eur J Immunol 26(8):1944–1950

    Article  PubMed  CAS  Google Scholar 

  • Croker DE, Halai R, Kaeslin G, Wende E, Fehlhaber B, Klos A, Monk PN, Cooper MA (2014) C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and beta-arrestin recruitment. Immunol Cell Biol 92(7):631–639

    Article  PubMed  CAS  Google Scholar 

  • Davis AE III, Lu F, Mejia P (2010) C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost 104(5):886–893

    PubMed  CAS  Google Scholar 

  • Degn SE, Hansen AG, Steffensen R, Jacobsen C, Jensenius JC, Thiel S (2009) MAp 44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation. J Immunol 183(11):7371–7378

    Article  PubMed  CAS  Google Scholar 

  • Degn SE, Thiel S, Nielsen O, Hansen AG, Steffensen R, Jensenius JC (2011) MAp 19, the alternative splice product of the MASP2 gene. J Immunol Methods 373(1–2):89–101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Delcayre AX, Salas F, Mathur S, Kovats K, Lotz M, Lernhardt W (1991) Epstein Barr virus/complement C3d receptor is an interferon alpha receptor. EMBO J 10(4):919–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271(5247):348–350

    Article  PubMed  CAS  Google Scholar 

  • Devalet B, Mullier F, Chatelain B, Dogne JM, Chatelain C (2015) Pathophysiology, diagnosis, and treatment of paroxysmal nocturnal hemoglobinuria: a review. Eur J Haematol 95(3):190–198

    Article  PubMed  Google Scholar 

  • Dodds AW, Ren XD, Willis AC, Law SK (1996) The reaction mechanism of the internal thioester in the human complement component C4. Nature 379(6561):177–179

    Article  PubMed  CAS  Google Scholar 

  • Drickamer K (1992) Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360(6400):183–186

    Article  PubMed  CAS  Google Scholar 

  • Dumestre-Perard C, Lamy B, Aldebert D, Lemaire-Vieille C, Grillot R, Brion JP, Gagnon J, Cesbron JY (2008) Aspergillus conidia activate the complement by the mannan-binding lectin C2 bypass mechanism. J Immunol 181(10):7100–7105

    Article  PubMed  CAS  Google Scholar 

  • Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K (2003) Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol 171(11):6105–6111

    Article  PubMed  CAS  Google Scholar 

  • Duus K, Hansen EW, Tacnet P, Frachet P, Arlaud GJ, Thielens NM, Houen G (2010a) Direct interaction between CD91 and C1q. FEBS J 277(17):3526–3537

    Article  PubMed  CAS  Google Scholar 

  • Duus K, Thielens NM, Lacroix M, Tacnet P, Frachet P, Holmskov U, Houen G (2010b) CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site. FEBS J 277(23):4956–4964

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt HU, Buhlmann D, Hortschansky P, Chen Q, Bohm S, Kemper MJ, Wallich R, Hartmann A, Hallstrom T, Zipfel PF, Skerka C (2013) Human factor H-related protein 2 (CFHR2) regulates complement activation. PLoS One 8(11):e78617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egan ES, Jiang RHY, Moechtar MA, Barteneva NS, Weekes MP, Nobre LV, Gygi SP, Paulo JA, Frantzreb C, Tani Y, Takahashi J, Watanabe S, Goldberg J, Paul AS, Brugnara C, Root DE, Wiegand RC, Doench JG, Duraisingh MT (2015) A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science 348(6235):711–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehlers MR (2000) CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect 2(3):289–294

    Article  PubMed  CAS  Google Scholar 

  • Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, Gustafson E, Hong J, Kozarcanin H, Magnusson PU, Huber-Lang M, Garred P, Nilsson B (2016) Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev 274(1):245–269

    Article  PubMed  CAS  Google Scholar 

  • Erdei A, Sandor N, Macsik-Valent B, Lukacsi S, Kremlitzka M, Bajtay Z (2016) The versatile functions of complement C3-derived ligands. Immunol Rev 274(1):127–140

    Article  PubMed  CAS  Google Scholar 

  • Falgarone G, Chiocchia G (2009) Chapter 8: Clusterin: a multifacet protein at the crossroad of inflammation and autoimmunity. Adv Cancer Res 104:139–170

    Article  PubMed  CAS  Google Scholar 

  • Fallman M, Andersson R, Andersson T (1993) Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 151(1):330–338

    PubMed  CAS  Google Scholar 

  • Fearon DT (1978) Regulation by membrane sialic acid of beta1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci U S A 75(4):1971–1975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fearon DT (1979) Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A 76(11):5867–5871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fearon DT, Austen KF (1975) Properdin: binding to C3b and stabilization of the C3b-dependent C3 convertase. J Exp Med 142(4):856–863

    Article  PubMed  CAS  Google Scholar 

  • Ferreira VP, Pangburn MK, Cortes C (2010) Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol 47(13):2187–2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer MB, Goerg S, Shen L, Prodeus AP, Goodnow CC, Kelsoe G, Carroll MC (1998) Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280(5363):582–585

    Article  PubMed  CAS  Google Scholar 

  • Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M (1989) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264(36):21522–21528

    PubMed  CAS  Google Scholar 

  • Fujita T (2002) Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2(5):346–353

    Article  PubMed  CAS  Google Scholar 

  • Fukui A, Yuasa-Nakagawa T, Murakami Y, Funami K, Kishi N, Matsuda T, Fujita T, Seya T, Nagasawa S (2002) Mapping of the sites responsible for factor I-cofactor activity for cleavage of C3b and C4b on human C4b-binding protein (C4bp) by deletion mutagenesis. J Biochem 132(5):719–728

    Article  PubMed  CAS  Google Scholar 

  • Gagnon J (1984) Structure and activation of complement components C2 and factor B. Philos Trans R Soc Lond Ser B Biol Sci 306(1129):301–309

    Article  CAS  Google Scholar 

  • Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736

    Article  PubMed  CAS  Google Scholar 

  • Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO (2016) A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 274(1):74–97

    Article  PubMed  CAS  Google Scholar 

  • Gelfand MC, Frank MM, Green I (1975) A receptor for the third component of complement in the human renal glomerulus. J Exp Med 142(4):1029–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghebrehiwet B, Peerschke EI (2004) Role of C1q and C1q receptors in the pathogenesis of systemic lupus erythematosus. Curr Dir Autoimmun 7:87–97

    Article  PubMed  CAS  Google Scholar 

  • Ghebrehiwet B, Medicus RG, Muller-Eberhard HJ (1979) Potentiation of antiboty-dependent cell-mediated cytotoxicity by target cell-bound C3b. J Immunol 123(3):1285–1288

    PubMed  CAS  Google Scholar 

  • Ghebrehiwet B, Silverberg M, Kaplan AP (1981) Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 153(3):665–676

    Article  PubMed  CAS  Google Scholar 

  • Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP (1983) Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 71(5):1450–1456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghebrehiwet B, Habicht GS, Beck G (1990) Interaction of C1q with its receptor on cultured cell lines induces an anti-proliferative response. Clin Immunol Immunopathol 54(1):148–160

    Article  PubMed  CAS  Google Scholar 

  • Ghebrehiwet B, Lim BL, Kumar R, Feng X, Peerschke EI (2001) gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection. Immunol Rev 180:65–77

    Article  PubMed  CAS  Google Scholar 

  • Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192(12):1797–1808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gigli I, Fujita T, Nussenzweig V (1979) Modulation of the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator. Proc Natl Acad Sci U S A 76(12):6596–6600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gjelstrup LC, Boesen T, Kragstrup TW, Jorgensen A, Klein NJ, Thiel S, Deleuran BW, Vorup-Jensen T (2010) Shedding of large functionally active CD11/CD18 Integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. J Immunol 185(7):4154–4168

    Article  PubMed  CAS  Google Scholar 

  • Gorski JP, Hugli TE, Muller-Eberhard HJ (1979) C4a: the third anaphylatoxin of the human complement system. Proc Natl Acad Sci U S A 76(10):5299–5302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gros P, Milder FJ, Janssen BJ (2008) Complement driven by conformational changes. Nat Rev Immunol 8(1):48–58

    Article  PubMed  Google Scholar 

  • Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852

    Article  PubMed  CAS  Google Scholar 

  • Hackam DJ, Rotstein OD, Zhang WJ, Demaurex N, Woodside M, Tsai O, Grinstein S (1997) Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-atpases. J Biol Chem 272(47):29810–29820

    Article  PubMed  CAS  Google Scholar 

  • Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317(5844):1552–1554

    Article  PubMed  CAS  Google Scholar 

  • Hamad OA, Ekdahl KN, Nilsson PH, Andersson J, Magotti P, Lambris JD, Nilsson B (2008) Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost 6(8):1413–1421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hara T, Kuriyama S, Kiyohara H, Nagase Y, Matsumoto M, Seya T (1992) Soluble forms of membrane cofactor protein (CD46, MCP) are present in plasma, tears, and seminal fluid in normal subjects. Clin Exp Immunol 89(3):490–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harboe M, Ulvund G, Vien L, Fung M, Mollnes TE (2004) The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol 138(3):439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison RA, Farries TC, Northrop FD, Lachmann PJ, Davis AE (1988) Structure of C3f, a small peptide specifically released during inactivation of the third component of complement. Complement 5(1):27–32

    Article  PubMed  CAS  Google Scholar 

  • Heinen S, Hartmann A, Lauer N, Wiehl U, Dahse HM, Schirmer S, Gropp K, Enghardt T, Wallich R, Halbich S, Mihlan M, Schlotzer-Schrehardt U, Zipfel PF, Skerka C (2009) Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood 114(12):2439–2447

    Article  PubMed  CAS  Google Scholar 

  • Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren CM (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124(5):915–927

    Article  PubMed  CAS  Google Scholar 

  • Hesketh TR, Dourmashkin RR, Payne SN, Humphrey JH, Lachmann PJ (1971) Lesions due to complement in lipid membranes. Nature 233(5322):620–623

    Article  PubMed  CAS  Google Scholar 

  • Hosszu KK, Valentino A, Vinayagasundaram U, Vinayagasundaram R, Joyce MG, Ji Y, Peerschke EI, Ghebrehiwet B (2012) DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood 120(6):1228–1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hostetter MK, Krueger RA, Schmeling DJ (1984) The biochemistry of opsonization: central role of the reactive thiolester of the third component of complement. J Infect Dis 150(5):653–661

    Article  PubMed  CAS  Google Scholar 

  • Hourcade DE (2006) The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem 281(4):2128–2132

    Article  PubMed  CAS  Google Scholar 

  • Hsu WC, Yang FC, Lin CH, Hsieh SL, Chen NJ (2014) C5L2 is required for C5a-triggered receptor internalization and ERK signaling. Cell Signal 26(7):1409–1419

    Article  PubMed  CAS  Google Scholar 

  • Huber-Lang M, Younkin EM, Sarma JV, Riedemann N, McGuire SR, Lu KT, Kunkel R, Younger JG, Zetoune FS, Ward PA (2002) Generation of C5a by phagocytic cells. Am J Pathol 161(5):1849–1859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12(6):682–687

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56(4):739–744

    Article  PubMed  CAS  Google Scholar 

  • Iida K, Nussenzweig V (1981) Complement receptor is an inhibitor of the complement cascade. J Exp Med 153(5):1138–1150

    Article  PubMed  CAS  Google Scholar 

  • Ingram G, Hakobyan S, Robertson NP, Morgan BP (2010) Elevated plasma C4a levels in multiple sclerosis correlate with disease activity. J Neuroimmunol 223(1–2):124–127

    Article  PubMed  CAS  Google Scholar 

  • Jozsi M, Zipfel PF (2008) Factor H family proteins and human diseases. Trends Immunol 29(8):380–387

    Article  PubMed  CAS  Google Scholar 

  • Kang YS, Do Y, Lee HK, Park SH, Cheong C, Lynch RM, Loeffler JM, Steinman RM, Park CG (2006) A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell 125(1):47–58

    Article  PubMed  CAS  Google Scholar 

  • Kanse SM, Gallenmueller A, Zeerleder S, Stephan F, Rannou O, Denk S, Etscheid M, Lochnit G, Krueger M, Huber-Lang M (2012) Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J Immunol 188(6):2858–2865

    Article  PubMed  CAS  Google Scholar 

  • Kemper C (2016) Targeting the Dark Horse of complement: the first generation of functionally selective C5aR2 ligands. Immunol Cell Biol 94(8):717–718

    Article  PubMed  CAS  Google Scholar 

  • Kemper C, Hourcade DE (2008) Properdin: new roles in pattern recognition and target clearance. Mol Immunol 45(16):4048–4056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kemper C, Pangburn MK, Fishelson Z (2014) Complement nomenclature 2014. Mol Immunol 61(2):56–58

    Article  PubMed  CAS  Google Scholar 

  • Kilgore KS, Schmid E, Shanley TP, Flory CM, Maheswari V, Tramontini NL, Cohen H, Ward PA, Friedl HP, Warren JS (1997) Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol 150(6):2019–2031

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim DD, Song WC (2006) Membrane complement regulatory proteins. Clin Immunol 118(2–3):127–136

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Choi BK, Song KM, Cha KW, Kim YH, Lee H, Han IS, Kwon BS (2013) CRIg signals induce anti-intracellular bacterial phagosome activity in a chloride intracellular channel 3-dependent manner. Eur J Immunol 43(3):667–678

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Takata Y, Kozono H, Takeda J, Hong KS, Inoue K (1988) C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J Immunol 141(11):3895–3901

    PubMed  CAS  Google Scholar 

  • Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA (1987) Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50(2):193–202

    Article  PubMed  CAS  Google Scholar 

  • Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7(3):345–355

    Article  PubMed  CAS  Google Scholar 

  • Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Kohl J (2009) The role of the anaphylatoxins in health and disease. Mol Immunol 46(14):2753–2766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klos A, Wende E, Wareham KJ, Monk PN (2013) International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 65(1):500–543

    Article  PubMed  CAS  Google Scholar 

  • Knobel HR, Villiger W, Isliker H (1975) Chemical analysis and electron microscopy studies of human C1q prepared by different methods. Eur J Immunol 5(1):78–82

    Article  PubMed  CAS  Google Scholar 

  • Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158(10):4525–4528

    PubMed  CAS  Google Scholar 

  • Krych-Goldberg M, Atkinson JP (2001) Structure-function relationships of complement receptor type 1. Immunol Rev 180:112–122

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman M, Joiner K, Ezekowitz RA (1989) The human mannose-binding protein functions as an opsonin. J Exp Med 169(5):1733–1745

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa S, Stearns-Kurosawa DJ (2014) Complement, thrombotic microangiopathy and disseminated intravascular coagulation. J Intensive Care 2(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  • Lachmann PJ (2009) The amplification loop of the complement pathways. Adv Immunol 104:115–149

    Article  PubMed  CAS  Google Scholar 

  • Lachmann PJ, Muller-Eberhard HJ (1968) The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement. J Immunol 100(4):691–698

    PubMed  CAS  Google Scholar 

  • Lachmann PJ, Nicol P (1973) Reaction mechanism of the alternative pathway of complement fixation. Lancet 1(7801):465–467

    Article  PubMed  CAS  Google Scholar 

  • Lachmann PJ, Kay AB, Thompson RA (1970) The chemotactic activity for neutrophil and eosinophil leucocytes of the trimolecular complex of the fifth, sixth and seventh components of human complement (C567) prepared in free solution by the ‘reactive lysis’ procedure. Immunology 19(6):895–899

    PubMed  PubMed Central  CAS  Google Scholar 

  • Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7(5):216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lay WH, Nussenzweig V (1968) Receptors for complement of leukocytes. J Exp Med 128(5):991–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehto T, Meri S (1993) Interactions of soluble CD59 with the terminal complement complexes. CD59 and C9 compete for a nascent epitope on C8. J Immunol 151(9):4941–4949

    PubMed  CAS  Google Scholar 

  • Liszewski MK, Atkinson JP (2015) Complement regulator CD46: genetic variants and disease associations. Hum Genomics 9:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  PubMed  CAS  Google Scholar 

  • Lozada C, Levin RI, Huie M, Hirschhorn R, Naime D, Whitlow M, Recht PA, Golden B, Cronstein BN (1995) Identification of C1q as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intercellular and vascular cell adhesion molecules 1. Proc Natl Acad Sci U S A 92(18):8378–8382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lueck K, Wasmuth S, Williams J, Hughes TR, Morgan BP, Lommatzsch A, Greenwood J, Moss SE, Pauleikhoff D (2011) Sub-lytic C5b-9 induces functional changes in retinal pigment epithelial cells consistent with age-related macular degeneration. Eye (Lond) 25(8):1074–1082

    Article  CAS  Google Scholar 

  • Ma W, Rai V, Hudson BI, Song F, Schmidt AM, Barile GR (2012) RAGE binds C1q and enhances C1q-mediated phagocytosis. Cell Immunol 274(1–2):72–82

    Article  PubMed  CAS  Google Scholar 

  • Ma YJ, Hein E, Munthe-Fog L, Skjoedt MO, Bayarri-Olmos R, Romani L, Garred P (2015) Soluble collectin-12 (CL-12) is a pattern recognition molecule initiating complement activation via the alternative pathway. J Immunol 195(7):3365–3373

    Article  PubMed  CAS  Google Scholar 

  • Malhotra V, Hogg N, Sim RB (1986) Ligand binding by the p150,95 antigen of U937 monocytic cells: properties in common with complement receptor type 3 (CR3). Eur J Immunol 16(9):1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Malhotra R, Thiel S, Reid KB, Sim RB (1990) Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med 172(3):955–959

    Article  PubMed  CAS  Google Scholar 

  • Manthey HD, Woodruff TM, Taylor SM, Monk PN (2009) Complement component 5a (C5a). Int J Biochem Cell Biol 41(11):2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28(4):184–192

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M (2013) Ficolins in complement activation. Mol Immunol 55(1):22–26

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 165(5):2637–2642

    Article  PubMed  CAS  Google Scholar 

  • Matthews KW, Mueller-Ortiz SL, Wetsel RA (2004) Carboxypeptidase N: a pleiotropic regulator of inflammation. Mol Immunol 40(11):785–793

    Article  PubMed  CAS  Google Scholar 

  • McCall-Culbreath KD, Li Z, Zutter MM (2008) Crosstalk between the alpha2beta1 integrin and c-met/HGF-R regulates innate immunity. Blood 111(7):3562–3570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDonald JF, Nelsestuen GL (1997) Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. Biochemistry 36(24):7464–7473

    Article  PubMed  CAS  Google Scholar 

  • McGreal EP, Ikewaki N, Akatsu H, Morgan BP, Gasque P (2002) Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol 168(10):5222–5232

    Article  PubMed  CAS  Google Scholar 

  • McRae JL, Duthy TG, Griggs KM, Ormsby RJ, Cowan PJ, Cromer BA, McKinstry WJ, Parker MW, Murphy BF, Gordon DL (2005) Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein. J Immunol 174(10):6250–6256

    Article  PubMed  CAS  Google Scholar 

  • Medicus RG, Gotze O, Muller-Eberhard HJ (1976a) Alternative pathway of complement: recruitment of precursor properdin by the labile C3/C5 convertase and the potentiation of the pathway. J Exp Med 144(4):1076–1093

    Article  PubMed  CAS  Google Scholar 

  • Medicus RG, Gotze O, Muller-Eberhard HJ (1976b) The serine protease nature of the C3 and C5 convertases of the classical and alternative complement pathways. Scand J Immunol 5(9):1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Medof ME, Nussenzweig V (1984) Control of the function of substrate-bound C4b-C3b by the complement receptor Cr1. J Exp Med 159(6):1669–1685

    Article  PubMed  CAS  Google Scholar 

  • Megyeri M, Harmat V, Major B, Vegh A, Balczer J, Heja D, Szilagyi K, Datz D, Pal G, Zavodszky P, Gal P, Dobo J (2013) Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway. J Biol Chem 288(13):8922–8934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ (1990) Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 71(1):1–9

    PubMed  PubMed Central  CAS  Google Scholar 

  • Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part I–molecular mechanisms of activation and regulation. Front Immunol 6:262

    PubMed  PubMed Central  Google Scholar 

  • Mikesch JH, Buerger H, Simon R, Brandt B (2006) Decay-accelerating factor (CD55): a versatile acting molecule in human malignancies. Biochim Biophys Acta 1766(1):42–52

    PubMed  CAS  Google Scholar 

  • Milis L, Morris CA, Sheehan MC, Charlesworth JA, Pussell BA (1993) Vitronectin-mediated inhibition of complement: evidence for different binding sites for C5b-7 and C9. Clin Exp Immunol 92(1):114–119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan BP (2016) The membrane attack complex as an inflammatory trigger. Immunobiology 221(6):747–751

    Article  PubMed  CAS  Google Scholar 

  • Morgan BP, Dankert JR, Esser AF (1987) Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol 138(1):246–253

    PubMed  CAS  Google Scholar 

  • Muller-Eberhard HJ, Polley MJ, Calcott MA (1967) Formation and functional significance of a molecular complex derived from the second and the fourth component of human complement. J Exp Med 125(2):359–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagasawa S, Stroud RM (1977) Cleavage of C2 by C1s into the antigenically distinct fragments C2a and C2b: demonstration of binding of C2b to C4b. Proc Natl Acad Sci U S A 74(7):2998–3001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM (2001) The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 166(5):3231–3239

    Article  PubMed  CAS  Google Scholar 

  • Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004

    PubMed  CAS  Google Scholar 

  • Newman SL, Devery-Pocius JE, Ross GD, Henson PM (1984) Phagocytosis by human monocyte-derived macrophages. Independent function of receptors for C3b (CR1) and iC3b (CR3). Complement 1(4):213–227

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Becker S, Halme J (1985) Phagocytosis by receptors for C3b (CR1), iC3b (CR3), and IgG (Fc) on human peritoneal macrophages. J Leukoc Biol 38(2):267–278

    Article  PubMed  CAS  Google Scholar 

  • Ni CS, Weyand NJ, Neumann C, Thomas J, So M, Astier AL (2011) The dynamic processing of CD46 intracellular domains provides a molecular rheostat for T cell activation. PLoS One 6(1):e16287

    Article  CAS  Google Scholar 

  • Nilsson SC, Sim RB, Lea SM, Fremeaux-Bacchi V, Blom AM (2011) Complement factor I in health and disease. Mol Immunol 48(14):1611–1620

    Article  PubMed  CAS  Google Scholar 

  • Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194(6):781–795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okinaga S, Slattery D, Humbles A, Zsengeller Z, Morteau O, Kinrade MB, Brodbeck RM, Krause JE, Choe HR, Gerard NP, Gerard C (2003) C5L2, a nonsignaling C5A binding protein. Biochemistry 42(31):9406–9415

    Article  PubMed  CAS  Google Scholar 

  • Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249(3):974–979

    PubMed  CAS  Google Scholar 

  • Paidassi H, Tacnet-Delorme P, Lunardi T, Arlaud GJ, Thielens NM, Frachet P (2008) The lectin-like activity of human C1q and its implication in DNA and apoptotic cell recognition. FEBS Lett 582(20):3111–3116

    Article  PubMed  CAS  Google Scholar 

  • Pangburn MK, Muller-Eberhard HJ (1986) The C3 convertase of the alternative pathway of human complement. Enzymic properties of the bimolecular proteinase. Biochem J 235(3):723–730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pangburn MK, Rawal N (2002) Structure and function of complement C5 convertase enzymes. Biochem Soc Trans 30(Pt 6):1006–1010

    Article  PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1977) Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med 146(1):257–270

    Article  PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 154(3):856–867

    Article  PubMed  CAS  Google Scholar 

  • Pangburn MK, Rawal N, Cortes C, Alam MN, Ferreira VP, Atkinson MA (2009) Polyanion-induced self-association of complement factor H. J Immunol 182(2):1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Pednekar L, Pandit H, Paudyal B, Kaur A, Al-Mozaini MA, Kouser L, Ghebrehiwet B, Mitchell DA, Madan T, Kishore U (2016) Complement protein C1q interacts with DC-SIGN via its globular domain and thus may interfere with HIV-1 transmission. Front Immunol 7:600

    PubMed  PubMed Central  Google Scholar 

  • Peerschke EI, Ghebrehiwet B (2014) cC1qR/CR and gC1qR/p33: observations in cancer. Mol Immunol 61(2):100–109

    Article  PubMed  CAS  Google Scholar 

  • Peerschke EI, Reid KB, Ghebrehiwet B (1993) Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med 178(2):579–587

    Article  PubMed  CAS  Google Scholar 

  • Pepys MB (1972) Role of complement in induction of the allergic response. Nat New Biol 237(74):157–159

    Article  PubMed  CAS  Google Scholar 

  • Pepys MB (1974) Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J Exp Med 140(1):126–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeifer PH, Brems JJ, Brunson M, Hugli TE (2000) Plasma C3a and C4a levels in liver transplant recipients: a longitudinal study. Immunopharmacology 46(2):163–174

    Article  PubMed  CAS  Google Scholar 

  • Podack ER, Tschopp J (1984) Membrane attack by complement. Mol Immunol 21(7):589–603

    Article  PubMed  CAS  Google Scholar 

  • Podack ER, Kolb WP, Muller-Eberhard HJ (1977) The SC5b-7 complex: formation, isolation, properties, and subunit composition. J Immunol 119(6):2024–2029

    PubMed  CAS  Google Scholar 

  • Podack ER, Tschoop J, Muller-Eberhard HJ (1982) Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly. J Exp Med 156(1):268–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Podack ER, Preissner KT, Muller-Eberhard HJ (1984) Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein. Acta Pathol Microbiol Immunol Scand Suppl 284:89–96

    PubMed  CAS  Google Scholar 

  • Prabagar MG, Do Y, Ryu S, Park JY, Choi HJ, Choi WS, Yun TJ, Moon J, Choi IS, Ko K, Ko K, Young SC, Cheong C, Kang YS (2013) SIGN-R1, a C-type lectin, enhances apoptotic cell clearance through the complement deposition pathway by interacting with C1q in the spleen. Cell Death Differ 20(4):535–545

    Article  PubMed  CAS  Google Scholar 

  • Preissner KT, Podack ER, Muller-Eberhard HJ (1985) The membrane attack complex of complement: relation of C7 to the metastable membrane binding site of the intermediate complex C5b-7. J Immunol 135(1):445–451

    PubMed  CAS  Google Scholar 

  • Pundir P, MacDonald CA, Kulka M (2015) The novel receptor C5aR2 is required for C5a-mediated human mast cell adhesion, migration, and proinflammatory mediator production. J Immunol 195(6):2774–2787

    Article  PubMed  CAS  Google Scholar 

  • Ricklin D, Lambris JD (2016) Therapeutic control of complement activation at the level of the central component C3. Immunobiology 221(6):740–746

    Article  PubMed  CAS  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roozendaal R, Carroll MC (2007) Complement receptors CD21 and CD35 in humoral immunity. Immunol Rev 219:157–166

    Article  PubMed  CAS  Google Scholar 

  • Rosen H, Law SK (1990) The leukocyte cell surface receptor(s) for the iC3b product of complement. Curr Top Microbiol Immunol 153:99–122

    PubMed  CAS  Google Scholar 

  • Ross GD, Lambris JD, Cain JA, Newman SL (1982) Generation of three different fragments of bound C3 with purified factor I or serum. I. Requirements for factor H vs CR1 cofactor activity. J Immunol 129(5):2051–2060

    PubMed  CAS  Google Scholar 

  • Ruan BH, Li X, Winkler AR, Cunningham KM, Kuai J, Greco RM, Nocka KH, Fitz LJ, Wright JF, Pittman DD, Tan XY, Paulsen JE, Lin LL, Winkler DG (2010) Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-alpha production in a receptor for advanced glycation end product-dependent manner. J Immunol 185(7):4213–4222

    Article  PubMed  CAS  Google Scholar 

  • Sadhu C, Ting HJ, Lipsky B, Hensley K, Garcia-Martinez LF, Simon SI, Staunton DE (2007) CD11c/CD18: novel ligands and a role in delayed-type hypersensitivity. J Leukoc Biol 81(6):1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Sandor N, Kristof K, Parej K, Pap D, Erdei A, Bajtay Z (2013) CR3 is the dominant phagocytotic complement receptor on human dendritic cells. Immunobiology 218(4):652–663

    Article  PubMed  CAS  Google Scholar 

  • Sandor N, Lukacsi S, Ungai-Salanki R, Orgovan N, Szabo B, Horvath R, Erdei A, Bajtay Z (2016) CD11c/CD18 dominates adhesion of human monocytes, macrophages and dendritic cells over CD11b/CD18. PLoS One 11(9):e0163120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharfstein J, Ferreira A, Gigli I, Nussenzweig V (1978) Human C4-binding protein. I. Isolation and characterization. J Exp Med 148(1):207–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997

    PubMed  CAS  Google Scholar 

  • Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2 Suppl 2):S41–S52

    Article  PubMed  PubMed Central  Google Scholar 

  • Scola AM, Johswich KO, Morgan BP, Klos A, Monk PN (2009) The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol 46(6):1149–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scribner DJ, Fahrney D (1976) Neutrophil receptors for IgG and complement: their roles in the attachment and ingestion phases of phagocytosis. J Immunol 116(4):892–897

    PubMed  CAS  Google Scholar 

  • Selander B, Martensson U, Weintraub A, Holmstrom E, Matsushita M, Thiel S, Jensenius JC, Truedsson L, Sjoholm AG (2006) Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J Clin Invest 116(5):1425–1434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7:10587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sessa L, Gatti E, Zeni F, Antonelli A, Catucci A, Koch M, Pompilio G, Fritz G, Raucci A, Bianchi ME (2014) The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One 9(1):e86903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shingu M, Nonaka S, Nishimukai H, Nobunaga M, Kitamura H, Tomo-Oka K (1992) Activation of complement in normal serum by hydrogen peroxide and hydrogen peroxide-related oxygen radicals produced by activated neutrophils. Clin Exp Immunol 90(1):72–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shoemaker RC, Giclas PC, Crowder C, House D, Glovsky MM (2008) Complement split products C3a and C4a are early markers of acute lyme disease in tick bite patients in the United States. Int Arch Allergy Immunol 146(3):255–261

    Article  PubMed  Google Scholar 

  • Sim RB, Reboul A, Arlaud GJ, Villiers CL, Colomb MG (1979) Interaction of 125I-labelled complement subcomponents C-1r and C-1s with protease inhibitors in plasma. FEBS Lett 97(1):111–115

    Article  PubMed  CAS  Google Scholar 

  • Skjoedt MO, Hummelshoj T, Palarasah Y, Honore C, Koch C, Skjodt K, Garred P (2010) A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. J Biol Chem 285(11):8234–8243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, Tsokos GC, Stoute JA (2010) Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog 6(6):e1000968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE (2007) Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 179(4):2600–2608

    Article  PubMed  CAS  Google Scholar 

  • Sprokholt JK, Overmars RJ, Geijtenbeek TBH (2016) “DC-SIGN in infection and immunity”. C-type lectin receptors in immunity. Springer, Japan, pp 129–150

    Book  Google Scholar 

  • Steckel EW, Welbaum BE, Sodetz JM (1983) Evidence of direct insertion of terminal complement proteins into cell membrane bilayers during cytolysis. Labeling by a photosensitive membrane probe reveals a major role for the eighth and ninth components. J Biol Chem 258(7):4318–4324

    PubMed  CAS  Google Scholar 

  • Steinberger P, Szekeres A, Wille S, Stockl J, Selenko N, Prager E, Staffler G, Madic O, Stockinger H, Knapp W (2002) Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning. J Leukoc Biol 71(1):133–140

    PubMed  CAS  Google Scholar 

  • Stoute JA (2011) Complement receptor 1 and malaria. Cell Microbiol 13(10):1441–1450

    Article  PubMed  CAS  Google Scholar 

  • Stricker RB, Savely VR, Motanya NC, Giclas PC (2009) Complement split products c3a and c4a in chronic lyme disease. Scand J Immunol 69(1):64–69

    Article  PubMed  CAS  Google Scholar 

  • Strickland DK, Au DT, Cunfer P, Muratoglu SC (2014) Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 34(3):487–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szebeni J (2007) The complement system: novel roles in health and disease. Springer, New York

    Google Scholar 

  • Takata Y, Kinoshita T, Kozono H, Takeda J, Tanaka E, Hong K, Inoue K (1987) Covalent association of C3b with C4b within C5 convertase of the classical complement pathway. J Exp Med 165(6):1494–1507

    Article  PubMed  CAS  Google Scholar 

  • Taylor RP, Ferguson PJ, Martin EN, Cooke J, Greene KL, Grinspun K, Guttman M, Kuhn S (1997) Immune complexes bound to the primate erythrocyte complement receptor (CR1) via anti-CR1 mAbs are cleared simultaneously with loss of CR1 in a concerted reaction in a rhesus monkey model. Clin Immunol Immunopathol 82(1):49–59

    Article  PubMed  CAS  Google Scholar 

  • Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A (1997) The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 185(9):1619–1627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126(Pt 13):2903–2913

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta T, Yamamoto T, Matsubara S, Nagasawa S, Tanase S, Tanaka J, Takagi K, Kambara T (1993) Novel function of C4a anaphylatoxin. Release from monocytes of protein which inhibits monocyte chemotaxis. Am J Pathol 142(6):1848–1857

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van Lith LH, Oosterom J, Van EA, Zaman GJ (2009) C5a-stimulated recruitment of beta-arrestin2 to the nonsignaling 7-transmembrane decoy receptor C5L2. J Biomol Screen 14(9):1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Verneret M, Tacnet-Delorme P, Osman R, Awad R, Grichine A, Kleman JP, Frachet P (2014) Relative contribution of c1q and apoptotic cell-surface calreticulin to macrophage phagocytosis. J Innate Immun 6(4):426–434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vijayan S, Asare Y, Grommes J, Soehnlein O, Lutgens E, Shagdarsuren G, Togtokh A, Jacobs MJ, Fischer JW, Bernhagen J, Weber C, Schober A, Shagdarsuren E (2014) High expression of C5L2 correlates with high proinflammatory cytokine expression in advanced human atherosclerotic plaques. Am J Pathol 184(7):2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Vogt W, Dames W, Schmidt G, Dieminger L (1977) Complement activation by the properdin system: formation of a stoichiometric. C3 cleaving complex of properdin factor B with C36. Immunochemistry 14(3):201–205

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Barbashov S, Jack RM, Barrett T, Weller PF, Nicholson-Weller A (1995) Hemolytically inactive C5b67 complex: an agonist of polymorphonuclear leukocytes. Blood 85(9):2570–2578

    PubMed  CAS  Google Scholar 

  • Wang R, Lu B, Gerard C, Gerard NP (2013) Disruption of the complement anaphylatoxin receptor C5L2 exacerbates inflammation in allergic contact dermatitis. J Immunol 191(8):4001–4009

    Article  PubMed  CAS  Google Scholar 

  • Weiler JM, Daha MR, Austen KF, Fearon DT (1976) Control of the amplification convertase of complement by the plasma protein beta1H. Proc Natl Acad Sci U S A 73(9):3268–3272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360(6400):127–134

    Article  PubMed  CAS  Google Scholar 

  • Werfel T, Oppermann M, Butterfield JH, Begemann G, Elsner J, Gotze O, Zwirner J (1996) The human mast cell line HMC-1 expresses C5a receptors and responds to C5a but not to C5a(desArg). Scand J Immunol 44(1):30–36

    Article  PubMed  CAS  Google Scholar 

  • Whaley K, Ruddy S (1976) Modulation of C3b hemolytic activity by a plasma protein distinct from C3b inactivator. Science 193(4257):1011–1013

    Article  PubMed  CAS  Google Scholar 

  • Wiegner R, Chakraborty S, Huber-Lang M (2016) Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology 221(10):1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Wiesmann C, Katschke KJ, Yin J, Helmy KY, Steffek M, Fairbrother WJ, McCallum SA, Embuscado L, DeForge L, Hass PE, van Lookeren CM (2006) Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444(7116):217–220

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1982) Tumor-promoting phorbol esters stimulate C3b and C3b’ receptor-mediated phagocytosis in cultured human monocytes. J Exp Med 156(4):1149–1164

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P (2009) Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol 10(7):728–733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu S, Wang J, Wang JH, Springer TA (2017) Distinct recognition of complement iC3b by integrins alphaXbeta2 and alphaMbeta2. Proc Natl Acad Sci U S A 114(13):3403–3408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon SH, Fearon DT (1985) Characterization of a soluble form of the C3b/C4b receptor (CR1) in human plasma. J Immunol 134(5):3332–3338

    PubMed  CAS  Google Scholar 

  • Zhao Y, Xu H, Yu W, Xie BD (2014) Complement anaphylatoxin C4a inhibits C5a-induced neointima formation following arterial injury. Mol Med Rep 10(1):45–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L, Shao S, Chen Y, Sun X, Sun R, Huang J, Zhan B, Zhu X (2017) Trichinella spiralis calreticulin binds human complement C1q as an immune evasion strategy. Front Immunol 8:636

    Article  PubMed  PubMed Central  Google Scholar 

  • Zipfel PF, Skerka C (1999) FHL-1/reconectin: a human complement and immune regulator with cell-adhesive function. Immunol Today 20(3):135–140

    Article  PubMed  CAS  Google Scholar 

  • Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9(10):729–740

    Article  PubMed  CAS  Google Scholar 

  • Zutter MM, Edelson BT (2007) The alpha2beta1 integrin: a novel collectin/C1q receptor. Immunobiology 212(4–5):343–353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Stoute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biryukov, S., Stoute, J.A. (2018). The Complement System. In: Stoute, J. (eds) Complement Activation in Malaria Immunity and Pathogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-77258-5_1

Download citation

Publish with us

Policies and ethics