Skip to main content

An Exploratory Discrete Factor Loading Method for Q-Matrix Specification in Cognitive Diagnostic Models

  • Conference paper
  • First Online:
Quantitative Psychology (IMPS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 233))

Included in the following conference series:

Abstract

The Q-matrix is usually unknown for many existing tests. If the Q-matrix is specified by subject matter experts but contains a large amount of misspecification, it will be difficult for the recovery of a high-quality Q-matrix through a validation method, because the performance of the validation method relies on the quality of a provisional Q-matrix. Under these two situations above, an exploratory technique is necessary. The purpose of this study is to explore a simple method for Q-matrix specification, called a discretized factor loading (DFL) method, in which exploratory factor analysis regarding latent attributes as latent factors is used to estimate a factor loading matrix after which a discretization process is employed on the factor loading matrix to obtain a binary Q-matrix. A series of simulation studies were conducted to investigate the performance of the DFL method under various conditions. The simulation results showed that the DFL method can provide a high-quality provisional Q-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buck, G., VanEssen, T., Tatsuoka, K. K., Kostin, I., Lutz, D., & Phelps, M. (1998). Development, selection and validation of a set of cognitive and linguistic attributes for the SAT I verbal sentence completion section (RR-98-23). Princeton, NJ: Educational Testing Services.

    Google Scholar 

  • Castellan, N. J. (1966). On the estimation of the tetrachoric correlation coefficient. Psychometrika, 31(1), 67–73.

    Article  MathSciNet  Google Scholar 

  • Chang, H.-H. (2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80(1), 1–20.

    Article  MathSciNet  Google Scholar 

  • Chang, H.-H., & Wang, W. Y. (2016). “Internet Plus” measurement and evaluation: A new way for adaptive learning. Journal of Jiangxi Normal University (Natural Science), 40(5), 441–455.

    MathSciNet  Google Scholar 

  • Cheng, Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619–632.

    Article  MathSciNet  Google Scholar 

  • Chiu, C.-Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598–618.

    Article  Google Scholar 

  • Chiu, C.-Y., Douglas, J. A., & Li, X.-D. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633–665.

    Article  MathSciNet  Google Scholar 

  • Close, C. N. (2012). An exploratory technique for finding the Q-matrix for the DINA model in cognitive diagnostic assessment: Combining theory with data. Unpublished doctoral dissertation, University of Minnesota, Educational Psychology.

    Google Scholar 

  • Cui, Y., Gierl, M. J., & Chang, H.-H. (2012). Estimating classification consistency and accuracy for cognitive diagnostic assessment. Journal of Educational Measurement, 49(1), 19–38.

    Article  Google Scholar 

  • de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343–362.

    Article  Google Scholar 

  • de la Torre, J., & Chiu, C.-Y. (2010, April). A general method of empirical Q-matrix validation. Paper presented at the meeting of the National Council on Measurement in Education, Denver, CO.

    Google Scholar 

  • de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253–273.

    Article  MathSciNet  Google Scholar 

  • DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447–468.

    Article  Google Scholar 

  • Ding, S. L., Yang, S. Q., & Wang, W. Y. (2010). The importance of reachability matrix in constructing cognitively diagnostic testing. Journal of Jiangxi Normal University (Natural Science), 34(5), 490–495.

    Google Scholar 

  • Embretson, S. E. (1984). A general latent trait model for response processes. Psychometrika, 49(2), 175–186.

    Article  MathSciNet  Google Scholar 

  • Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26(4), 301–321.

    Article  Google Scholar 

  • Hartz, S. M. (2002). A bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Henson, R., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29(4), 262–277.

    Article  MathSciNet  Google Scholar 

  • Huo, Y., & de la Torre, J. (2013, April). Data-driven Q-matrix specification for subsequent test forms. Paper presented at the meeting of the National Council on Measurement in Education, San Francisco, CA.

    Google Scholar 

  • Im, S. (2007). Statistical consequences of attribute misspecfication of the rule space model. Unpublished doctoral dissertation, Columbia University.

    Google Scholar 

  • Im, S., & Corter, J. E. (2011). Statistical consequences of attribute misspecification in the rule space method. Educational and Psychological Measurement, 71(4), 712–731.

    Article  Google Scholar 

  • Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion model application to language assessment. Language Testing, 26(1), 31–73.

    Article  MathSciNet  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272.

    Article  MathSciNet  Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200.

    Article  Google Scholar 

  • Leighton, J. P., & Gierl, M. J. (Eds.). (2007). Cognitive diagnostic assessment for education: Theory and applications. New York: Cambridge University Press.

    Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548–564.

    Article  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2013). Theory of self-learning Q-matrix. Bernoulli, 19(5A), 1790–1817.

    Article  MathSciNet  Google Scholar 

  • Liu, R., Huggins-Manley, A. C., & Bradshaw, L. (2016). The impact of Q-matrix designs on diagnostic classification accuracy in the presence of attribute hierarchies. Educational and Psychological Measurement, 77(2), 220–240.

    Article  Google Scholar 

  • Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection, and attribute classification. Applied Psychological Measurement, 40(3), 200–217.

    Article  Google Scholar 

  • McGlohen, M. K. (2004). The application of cognitive diagnosis and computerized adaptive testing to a large-scale assessment. Unpublished doctorial dissertation, University of Texas at Austin.

    Google Scholar 

  • McGlohen, M. K., & Chang, H.-H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40(3), 808–821.

    Article  Google Scholar 

  • Rupp, A. A., & Templin, J. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78–96.

    Article  MathSciNet  Google Scholar 

  • Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: The Guilford Press.

    Google Scholar 

  • Tatsuoka, K. K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. L. Glaser, A. M. Lesgold, & M. G. Safto (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 453–488). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern classification approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessments (pp. 327–359). Hillsdale: Erlbaum.

    Google Scholar 

  • Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. New York: Taylor & Francis Group.

    Google Scholar 

  • Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305.

    Article  Google Scholar 

  • Tu, D.-B., Cai, Y., & Dai, H.-Q. (2012). A new method of Q-matrix validation based on DINA model. Acta Psychologica Sinica, 44(4), 558–568.

    Article  Google Scholar 

  • Xing, D., & Hambleton, R. K. (2004). Test design, item quality, and item bank size on the psychometric properties of computer-based credentialing examinations. Educational and Psychological Measurement, 64(1), 5–21.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 31500909, 31360237, and 31160203), the Key Project of National Education Science “Twelfth Five Year Plan” of Ministry of Education of China (Grant No. DHA150285), the National Social Science Fund of China (Grant No. 16BYY096), the Humanities and Social Sciences Research Foundation of Ministry of Education of China (Grant No. 12YJA740057), the National Natural Science Foundation of Jiangxi (Grant No. 20161BAB212044), the Education Science Foundation of Jiangxi (Grant No. 13YB032), the Social Science Foundation of Jiangxi (Grant No. 17JY10), and the Youth Growth Fund and the Doctoral Starting up Foundation of Jiangxi Normal University. The authors would like to thank the editor Dylan Molenaar for the valuable comments on our submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Song, L., Ding, S. (2018). An Exploratory Discrete Factor Loading Method for Q-Matrix Specification in Cognitive Diagnostic Models. In: Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D. (eds) Quantitative Psychology. IMPS 2017. Springer Proceedings in Mathematics & Statistics, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-319-77249-3_29

Download citation

Publish with us

Policies and ethics