Skip to main content

Optimal Scores as an Alternative to Sum Scores

  • Conference paper
  • First Online:
Quantitative Psychology (IMPS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 233))

Included in the following conference series:

Abstract

This paper discusses the use of optimal scores as an alternative to sum scores and expected sum scores when analyzing test data. Optimal scores are built on nonparametric methods and use the interaction between the test takers’ responses on each item and the impact of the corresponding items on the estimate of their performance. Both theoretical arguments for optimal score as well as arguments built upon simulation results are given. The paper claims that in order to achieve the same accuracy in terms of mean squared error and root mean squared error, an optimally scored test needs substantially fewer items than a sum scored test. The top-performing test takers and the bottom 5% test takers are by far the groups that benefit most from using optimal scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental tests (pp. 395–479). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Bränberg, K., & Wiberg, M. (2011). Observed score linear equating with covariates. Journal of Educational Measurement, 48, 419–440.

    Article  Google Scholar 

  • Lee, Y.-S. (2007). A comparison of methods for nonparametric estimation of item characteristic curves for binary items. Applied Psychological Measurement, 37, 121–134.

    Article  MathSciNet  Google Scholar 

  • Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Mokken, R. J. (1997). Nonparametric models for dichotomous responses. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 351–367). New York, NY: Springer.

    Chapter  Google Scholar 

  • Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611–630.

    Article  Google Scholar 

  • Ramsay, J. O. (1997). A functional approach to modeling test data. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 351–367). New York, NY: Springer.

    Google Scholar 

  • Ramsay, J. O. (2000). TestGraf: A program for the graphical analysis of multiple choice test and questionnaire data. [Computer software and manual]. Department of Psychology, McGill University, Montreal Canada.

    Google Scholar 

  • Ramsay, J. O., Hooker, G., & Graves, S. (2009). Functional data analysis in R and Matlab. New York, NY: Springer.

    Book  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2002). Functional models for test items. In Applied functional data analysis. New York, NY: Springer.

    Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. New York: Springer.

    Google Scholar 

  • Ramsay, J. O., & Wiberg, M. (2017a). A strategy for replacing sum scores. Journal of Educational and Behavioral Statistics, 42, 282–307.

    Article  Google Scholar 

  • Ramsay, J. O., & Wiberg, M. (2017b). Breaking through the sum score barrier. In Paper presented at the International Meeting of the Psychometric Society, July 11–15, Asheville, NC (pp. 151–158).

    Google Scholar 

  • Rossi, N., Wang, X., & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm. Journal of the Behavioral and Educational Sciences, 27, 291–317.

    Google Scholar 

  • Wallin, G., & Wiberg, M. (2017). Non-equivalent groups with covariates design using propensity scores for kernel equating. In L. A. van der Ark, M. Wiberg, S. A. Culpepper, J. A. Douglas, & W.-C. Wang. (Eds.), Quantitative psychology—81st annual meeting of the psychometric society, Asheville, North Carolina, 2016 (pp. 309–320). New York: Springer.

    Google Scholar 

  • Wiberg, M., & Bränberg, K. (2015). Kernel equating under the non-equivalent groups with covariates design. Applied Psychological Measurement, 39, 349–361.

    Article  Google Scholar 

  • Woods, C. M. (2006). Ramsay-curve item response theory (RC-IRT) to detect and correct for nonnormal latent variables. Psychological Methods, 11, 253–270.

    Article  Google Scholar 

  • Woods, C. M., & Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71, 281–301.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by the Swedish Research Council grant 2014-578.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Wiberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiberg, M., Ramsay, J.O., Li, J. (2018). Optimal Scores as an Alternative to Sum Scores. In: Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D. (eds) Quantitative Psychology. IMPS 2017. Springer Proceedings in Mathematics & Statistics, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-319-77249-3_1

Download citation

Publish with us

Policies and ethics