Advertisement

Conclusion

  • Qiyuan Liu
  • Alexander Edward
  • Carlos Briseno-Vidrios
  • Jose Silva-Martinez
Chapter

Abstract

This chapter summarizes the main conclusions of the work. The performance of the prototype chips is compared with the state-of-the-art implementations as presented in the literature.

References

  1. 1.
    J. Wannstrom, Long-term-evolution advanced (LTE-A) [Online] (2013). Available: http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
  2. 2.
    A. Edward, J. Silva-Martinez, General analysis of feedback DAC’s clock jitter in continuous-time sigma-delta modulators. IEEE Trans. Circuits Syst II 61(7), 506–510 (2014)Google Scholar
  3. 3.
    C. Briseno-Vidrios, A. Edward, A. Shafik, S. Palermo, J. Silva-Martinez, A 75-MHz continuous-time sigma-delta modulator employing a broadband low-power highly efficient common-gate summing stage. IEEE J. Solid State Circuits 52(3), 657–668 (2017)Google Scholar
  4. 4.
    A. Edward, Q. Liu, C. Briseno-Vidrios, M. Kinyua, E.G. Soenen, A.I. Karsilayan, J. Silva-Martinez, A 43-mW MASH 2-2 CT ΣΔ modulator attaining 74.4/75.8/76.8 dB of SNDR/SNR/DR and 50 MHz of BW in 40-nm CMOS. IEEE J. Solid State Circuits 52(2), 448–459 (2017)Google Scholar
  5. 5.
    C. Briseno-Vidrios, A. Edward, N. Rashidi, J. Silva-Martinez, A 4 bit continuous-time ΣΔ modulator with fully digital quantization noise reduction algorithm employing a 7 bit quantizer. IEEE J. Solid State Circuits 51(6), 1398–1409 (2016)Google Scholar
  6. 6.
    Q. Liu, A. Edward, D. Zhou, J. Silva-Martinez, A continuous-time MASH 1-1-1 delta-sigma modulator with FIR DAC and encoder-embedded loop-unrolling quantizer in 40-nm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 99, 1–12 (2017)Google Scholar
  7. 7.
    B. Murmann, ADC performance survey [Online] (2010–2017). Available: http://www.stanford.edu/~murmann/adcsurvey.html
  8. 8.
    Y. Dong, J. Zhao, W. Yang, T. Caldwell, H. Shibata, R. Schreier, Q. Meng, J. Silva, D. Paterson, J. Gealow, A 930mW 69dB-DR 465MHz-BW CT 1-2 MASH ADC in 28nm CMOS, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2016), pp. 278–279Google Scholar
  9. 9.
    B. Nowachi, N. Paulino, J. Goes, A 1V 77dB-DR 72dB-SNDR 10Hz-BW 2-1 MASH CT ΔΣM, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2016), pp. 274–275Google Scholar
  10. 10.
    Q. Liu, A. Edward, C. Briseno-Vidrios, N. Rashidi, J. Silva-Martinez, High-performance continuous-time MASH sigma-delta ADCs for broadband wireless applications, in IEEE Midwest Symp. on Circuits and Systems (MWSCAS), Boston (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qiyuan Liu
    • 1
  • Alexander Edward
    • 2
  • Carlos Briseno-Vidrios
    • 3
  • Jose Silva-Martinez
    • 4
  1. 1.Qualcomm IncorporatedTempeUSA
  2. 2.Intel CorporationHillsboroUSA
  3. 3.Silicon Laboratories IncorporatedAustinUSA
  4. 4.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations