MASH 4-0 CTΔΣM with Fully Digital Quantization Noise Reduction Algorithm

  • Qiyuan Liu
  • Alexander Edward
  • Carlos Briseno-Vidrios
  • Jose Silva-Martinez


This chapter presents a fully digital quantization noise reduction algorithm (DQNRA) for a multistage noise-shaping (MASH) 4-0 continuous-time ΔΣ modulator (CTΔΣM). The presented algorithm is robust to process voltage and temperature (PVT) variations and overcomes the quantization noise leakage issues. A CTΔΣM employs a 7-bit quantizer, from which the four most significant bits are used in a fourth-order ΔΣM loop. The remaining three least significant bits are used for the DQNRA to improve the quantization noise cancelation. The presented MASH 4-0 CTΔΣM prototype was implemented in 130 nm CMOS technology. The modulator’s total power consumption is 20 mW and the 7-bit quantizer consumes only 6 mW operating at 500 MHz. For this prototype, the DQNRA algorithm improved the modulator’s signal-to-noise and distortion ratio (SNDR) from 69 to 75 dB within a 15 MHz bandwidth.


  1. 1.
    T. Leslie, B. Singh, An improved sigma-delta modulator architecture, in IEEE Proceedings of International Symposium Circuits and Systems (ISCAS), New Orleans (1990), pp. 372–375Google Scholar
  2. 2.
    T.L. Brooks, D.H. Robertson, D.F. Kelly, A. Del Muro, S.W. Harston, A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR. IEEE J. Solid State Circuits 32(12), 1896–1906 (1997)Google Scholar
  3. 3.
    A. Gharbiya, D.A. Johns, A 12-bit 3.125 MHz bandwidth 0-3 MASH delta-sigma modulator. IEEE J. Solid State Circuits 44(7), 2010–2018 (2009)Google Scholar
  4. 4.
    N. Maghari, S. Kwon, U.K. Moon, 74 dB SNDR multi-loop sturdy-MASH delta-sigma modulator using 35 dB open-loop opamp gain. IEEE J. Solid State Circuits 44(8), 2212–2221 (2009)CrossRefGoogle Scholar
  5. 5.
    D.-Y. Yoon, S. Ho, H.-S. Lee, A continuous-time sturdy-MASH ΔΣ modulator in 28 nm CMOS. IEEE J. Solid State Circuits 50(12), 2880–2890 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Dong, W. Yang, R. Schreier, A. Sheikholeslami, S. Korrapati, A continuous-time 0-3 MASH ADC achieving 88 dB DR with 53 MHz BW in 28 nm CMOS. IEEE J. Solid State Circuits 49(12), 2868–2877 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Mitteregger, C. Ebner, S. Mechnig, T. Blon, C. Holuigue, E. Romani, A 20-mW 640-MHz CMOS continuous-time ΣΔ ADC with 20-MHz signal bandwidth. IEEE J. Solid State Circuits 41(12), 2641–2649 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Bolatkale, L.J. Breems, R. Rutten, K.A.A. Makinwa, A 4 Ghz continuous-time ΔΣ ADC with 70 dB DR and -74 dBFS THD in 125 MHz BW. IEEE J. Solid State Circuits 46(12), 2857–2867 (2011)CrossRefGoogle Scholar
  9. 9.
    A.G. Dingwall, V. Zazzu, An 8-MHz CMOS subranging 8-bit A/D converter. IEEE J. Solid State Circuits 20(6), 1138–1143 (1985)CrossRefGoogle Scholar
  10. 10.
    B.P. Brandt, J. Lutsky, A 75-mW, 10-b, 20-MSPS CMOS subranging ADC iwth 9.5 effective bits at Nyquist. IEEE J. Solid State Circuits 34(12), 1788–1795 (1999)Google Scholar
  11. 11.
    T. Danjo, M. Yoshioka, M. Isogai, M. Hoshino, S. Tsukamoto, A 6-bit, 1-GS/s, 9.9-mW, interpolated subranging ADC in 65-nm CMOS. IEEE J. Solid State Circuits 49(3), 673–682 (2014)Google Scholar
  12. 12.
    P.M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi, K. Tanabe, J. Vital, A 90nm CMOS 1.2v 6b 1GS/s two-step subranging ADC, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2006), pp. 2320–2329Google Scholar
  13. 13.
    D. Ohhata, K. Uchino, Y. Shimizu, K. Oyama, K. Yamashita, Design of a 770-MHz, 70-mW, 8-bit subranging ADC using reference voltage precharging architecture. IEEE J. Solid State Circuits 44(11), 2881–2890 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Chung, J. Wu, A 16-mW 8-bit 1-GS/s digital-subranging ADC in 55-nm CMOS. IEEE Trans Very Large Scale Integr. Syst. 23(3), 557–566 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, S.-J. Chang, A 9-bit 150-MS/s subrange ADC based on SAR architecture in 90-nm CMOS. IEEE Trans. Circuits Syst. I 60(3), 570–581 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    I.-N. Ku, Z. Xu, Y.-C. Kuang, Y.-H. Wang, M.-C.F. Chang, A 40-mW 70bit 2.2-GS/s time-interleaved subranging CMOS ADC for low-power gigabit wireless communications. IEEE J. Solid State Circuits 47(8), 1854–1865 (2012)Google Scholar
  17. 17.
    Y.-C. Lien, A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm CMOS technology, in IEEE Int. Symp. VLSI Circuits (VLSI) Dig. Tech. Papers, Honolulu (2012), pp. 88–89Google Scholar
  18. 18.
    S. Hashemi, B. Razavi, A 7.1 mW 1GS/s ADC with 48 dB SNDR at Nyquist rate. IEEE J. Solid State Circuits 49(8), 1739–1750 (2014)Google Scholar
  19. 19.
    Y.-H. Chung, J.-T. Wu, A CMOS 6-mW 10-bit 100-MS/s two-step ADC. IEEE J. Solid State Circuits 45(11), 2217–2226 (2010)Google Scholar
  20. 20.
    B.K. Thandri, J. Silva-Martinez, A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no miller capacitors. IEEE J. Solid State Circuits 38(2), 237–243 (2003)CrossRefGoogle Scholar
  21. 21.
    D.A. Mercer, Low-power approaches to high-speed current-steering digital-to-analog converters in 0.18 μm CMOS. IEEE J. Solid State Circuits 42(8), 1688–1698 (2007)Google Scholar
  22. 22.
    B. Nikolic, V.G. Oklobdzija, V. Stojanovic, W. Jia, J.K.-S. Chiu, M.M.-T. Leung, Improved sense-amplifier-based flip-flop: design and measurements. IEEE J. Solid State Circuits 35(6), 876–884 (2000)CrossRefGoogle Scholar
  23. 23.
    D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, B. Nauta, A double-tail latch-type voltage sense amplifier with 18 ps setup+hold time, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2007), pp. 314–605Google Scholar
  24. 24.
    C.-H. Yang, Y.-H. Yu, D. Markovic, Power and area minimization of reconfigurable FFT processors: a 3GPP-LTE example. IEEE J. Solid State Circuits 47(3), 757–768 (2012)CrossRefGoogle Scholar
  25. 25.
    R. Zanbaghi, S. Saxena, G.C. Temes, T.S. Fiez, A 75-dB SNDR 5-MHz bandwidth stage-shared 2-2 MASH modulator dissipating 16 mW power. IEEE Trans. Circuits Syst. I 59(8), 1614–1625 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S.-C. Lee, Y. Chiu, A 15-MHz bandwidth 1-0 MASH ΣΔ ADC with nonlinear memory error calibration achieving 85-dBc SFDR. IEEE J. Solid State Circuits 49(3), 695–707 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qiyuan Liu
    • 1
  • Alexander Edward
    • 2
  • Carlos Briseno-Vidrios
    • 3
  • Jose Silva-Martinez
    • 4
  1. 1.Qualcomm IncorporatedTempeUSA
  2. 2.Intel CorporationHillsboroUSA
  3. 3.Silicon Laboratories IncorporatedAustinUSA
  4. 4.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations