Skip to main content

Uses and Limitation of Continuous-Time Models to Examine Dyadic Interactions

  • Chapter
Book cover Continuous Time Modeling in the Behavioral and Related Sciences

Abstract

In this chapter we present an application of the exact discrete model, first proposed by Bergstrom, to model daily interactions among romantic couples. The theoretical model is based on work by Felmlee and Greenberg (J Math Soc 23(3):155–180, 1999), which specifies that change in affect results from the combination of a weighted difference between long-term expectations and daily ratings as well as daily ratings between partners in the dyad. To verify the correct specification, we used simulated models using the LSDE SAS/IML package developed by Singer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This matrix is used to estimate the Fisher information matrix which is in turn used to estimate standard errors of the model parameters.

  2. 2.

    For the Felmlee-Greenberg specification o = 6.

References

  • Baltes, P. B., Reese, H. W., & Nesselroade, J. R. (1988). Life-span developmental psychology: Introduction to research methods (reprint of 1977 edition). Mahwah: Erlbaum.

    Google Scholar 

  • Bergstrom, A. R. (1988). The history of continuous-time econometric models. Econometric Theory, 4, 365–383. https://doi.org/10.1017/S0266466600013359

    Article  MathSciNet  Google Scholar 

  • Boker, S. M. (2001). Differential structural equation modeling of intraindividual variability. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 5–27). Washington: American Psychological Association. https://doi.org/10.1037/10409-001.

    Chapter  Google Scholar 

  • Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., …Driver, C. (2015). OpenMx 2.3.1 user guide [Computer software manual].

    Google Scholar 

  • Box, G. E. P. (1950). Problems in the analysis of growth and wear curves. Biometrics, 6(4), 362–389. https://doi.org/10.2307/3001781.

    Article  Google Scholar 

  • Box, G. E. P., & Pierce, D. A. (1970). Distribution of residual correlations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65, 1509–1526.

    Article  MathSciNet  Google Scholar 

  • Canova, F. (2007). Methods for applied macroeconomic research (vol. 13). Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Chow, S.-M., Ho, M. H. R., Hamaker, E. J., & Dolan, C. V. (2010). Equivalences and differences between structural equation and state-space modeling frameworks. Structural Equation Modeling, 17, 303–332. https://doi.org/10.1080/10705511003661553

    Article  MathSciNet  Google Scholar 

  • Coleman, J. S. (1964). Introduction to mathematical sociology. New York: Free Press.

    Google Scholar 

  • Coleman, J. S. (1968). The mathematical study of change. In H. M. Blalock & A. Blalock (Eds.), Methodology in social research (pp. 428–478). New York: McGraw-Hill.

    Google Scholar 

  • Cranford, J. A., Shrout, P. E., Iida, M., Rafaeli, E., Yip, T., & Bolger, N. (2006). A procedure for evaluating sensitivity to within-person change: Can mood measures in diary studies detect change reliably? Personality and Social Psychology Bulletin, 32(7), 917–929.

    Article  Google Scholar 

  • Cronbach, L. J., & Furby, L. (1970). How we should measure change—or should we? Psychological Bulletin, 74, 68–80.

    Article  Google Scholar 

  • Davidson, M. L. (1972). Univariate versus multivariate tests in repeated measures experiments. Psychological Bulletin, 77(6), 446–452. https://doi.org/10.1037/h0032674.

    Article  Google Scholar 

  • Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation modelling with R package ctsem. Journal of Statistical Software, 77(5), 1–35. https://doi.org/10.18637/jss.v077.i05.

    Article  Google Scholar 

  • Felmlee, D. H. (2006). Application of dynamic systems analysis to dyadic interactions. In A. Ong & M. V. Dulmen (Eds.), Oxford handbook of methods in positive psychology (pp. 409–422). Oxford: Oxford University Press.

    Google Scholar 

  • Felmlee, D. H., & Greenberg, D. F. (1999). A dynamic systems model of dyadic interaction. The Journal of Mathematical Sociology, 23(3), 155–180. https://doi.org/10.1080/0022250X.1999.9990218.

    Article  Google Scholar 

  • Ferrer, E., & Steele, J. S. (2011). Dynamic systems analysis of affective processes in dyadic interactions using differential equations. In G. R. Hancock & J. R. Harring (Eds.), Advances in longitudinal methods in the social and behavioral sciences (pp. 111–134). Charlotte: Information Age Publishing.

    Google Scholar 

  • Ferrer, E., & Steele, J. S. (2014). Differential equations for evaluating theoretical models of dyadic interactions. In Handbook of developmental systems theory and methodology (pp. 345–368). New York: Guilford Press.

    Google Scholar 

  • Gilbert, P. D. (2006). Brief user’s guide: Dynamic systems estimation [Computer software manual]. Retrieved from http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf.

    Google Scholar 

  • Hosking, J. R. M. (1980). The multivariate portmanteau statistic. Journal of the American Statistical Association, 75, 602–608. https://doi.org/10.1080/01621459.1980.10477520

    Article  MathSciNet  Google Scholar 

  • Jazwinski, A. H. (1970). Stochastic processes and filtering theory. New York: Academic Press.

    MATH  Google Scholar 

  • Juhl, R. (2015). Ctsmr: Ctsm for R [Computer software manual]. R package version 0.6.8-5.

    Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45.

    Article  Google Scholar 

  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65, 297–303. https://doi.org/10.1093/biomet/65.2.297.

    Article  Google Scholar 

  • MacCallum, R., & Ashby, F. G. (1986). Relationships between linear systems theory and covariance structure modeling. Journal of Mathematical Psychology, 30(1), 1–27.

    Article  MathSciNet  Google Scholar 

  • McDonald, R. P., & Swaminathan, H. (1973). A simple matrix calculus with application to multivariate analysis. General Systems, XVIII, 37–54.

    Google Scholar 

  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107–122. https://doi.org/10.1007/BF02294746.

    Article  Google Scholar 

  • Miller, M. L., & Ferrer, E. (2017). The effect of sampling-time variation on latent growth curve model fit. Structural Equation Modeling, 24, 831–854. https://doi.org/10.1080/10705511.2017.1346476.

    Article  MathSciNet  Google Scholar 

  • Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kickpatrick, R. M., …Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, (81), 535–549. https://doi.org/10.1007/s11336-014-9435-8.

  • Nielsen, F., & Rosenfeld, R. A. (1981). Substantive interpretations of differential equation models. American Sociological Review, 46(2), 159–174. https://doi.org/10.2307/2094976.

    Article  Google Scholar 

  • O’Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. Psychological Bulletin, 97(2), 316. https://doi.org/10.1037/0033-2909.97.2.316.

    Article  Google Scholar 

  • Oud, J. H. L. (2004). SEM state space modeling of panel data in discrete and continuous time and its relationship to traditional state space modeling. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Recent developments on structural equation models: Theory and applications (pp. 13–40). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Oud, J. H. L. (2007). Comparison of four procedures to estimate the damped linear differential oscillator for panel data. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 19–40). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199–215. https://doi.org/10.1007/BF02294374.

    Article  MathSciNet  Google Scholar 

  • Oud, J. H. L., & Singer, H. (2008). Continuous time modeling of panel data: SEM versus filter techniques. Statistica Neerlandica, 62, 4–28.

    Article  MathSciNet  Google Scholar 

  • SAS Institute Inc. (2002–2008). SAS 9.2 Help and documentation [Computer software manual]. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Singer, H. (1991a). Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components. Journal of Time Series Analysis, 14, 527–545.

    Article  MathSciNet  Google Scholar 

  • Singer, H. (1991b). LSDE- A program package for the simulation, graphical display, optimal filtering and maximum likelihood estimation of Linear Stochastic Differential Equations. Meersburg: Author.

    Google Scholar 

  • Steele, J. S., & Ferrer, E. (2011). Latent differential equation modeling of self-regulatory and coregulatory affective processes. Multivariate Behavioral Research, 46(6), 956–984.

    Article  Google Scholar 

  • Steele, J. S., Ferrer, E., & Nesselroade, J. R. (2014). An idiographic approach to estimating models of dyadic interactions with differential equations. Psychometrika, 79(4), 675–700. https://doi.org/10.1007/s11336-013-9366-9.

    Article  MathSciNet  Google Scholar 

  • Tucker, L. R. (1958). Determination of parameters of a functional relation by factor analysis. Psychometrika, 23(1), 19–23. https://doi.org/10.1007/BF02288975.

    Article  Google Scholar 

  • Voelkle, M. C. (2017). A new perspective on three old methodological issues: The role of time, missing values, and cohorts in longitudinal models of youth development. In A. C. Petersen, S. H. Koller, F. Motti-Stefanidi, & S. Verma (Eds.), Positive youth development in global contexts of social and economic change (pp. 110–136). New York: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Steele .

Editor information

Editors and Affiliations

6.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

SupplementaryMaterialCh.06 (ZIP 3kb)

Appendices

Appendix 1: McDonald-Swaminathan Matrix Differentiation

The specification of an LSDE model in the SAS/IML® framework requires the specification of matrix derivatives. Matrix differentiation is specified for each of the matrices that make up the state-space specification and is evaluated with respect to the parameters that make up each element. The implementation of matrix differentiation used by the LSDE package is based on the work of McDonald and Swaminathan (1973) which outlines how matrix differentiation can be performed. Given a matrix Y that is n × m in size, with elements that represent some function of the elements of another matrix X, which is p × q in size, the differentiation of Y with respect to X in the McDonald-Swaminathan rules would result in a matrix of partial derivatives \(\frac {\partial Y}{\partial X}\) that is n(m) × p(q) in size.

As an example, imagine Y is a 2 × 2 matrix and is to be differentiated base on another matrix X that is also 2 × 2. The result of differentiation is a 4 × 4 matrix of partial derivatives. Specifically, each of the rows of Y are arranged into a single row vector that is 1 × n(m) in size,

(6.15)

The same process is performed for the matrix X and transposed to produce a column vector of elements that is p(q) × 1 in size,

(6.16)

The differentiation is arranged as the outer product of these vectors, resulting in a p(q) × n(m) matrix of partial derivatives,

$$\displaystyle \begin{aligned} \frac{\partial Y}{\partial X} = \left[ \begin{array}{cccc} \frac{\partial y_{11}}{\partial x_{11}}& \frac{\partial y_{12}}{\partial x_{11}}& \frac{\partial y_{21}}{\partial x_{11}}& \frac{\partial y_{22}}{\partial x_{11}}\\ \frac{\partial y_{11}}{\partial x_{12}}& \frac{\partial y_{12}}{\partial x_{12}}& \frac{\partial y_{21}}{\partial x_{12}}& \frac{\partial y_{22}}{\partial x_{12}}\\ \frac{\partial y_{11}}{\partial x_{21}}& \frac{\partial y_{12}}{\partial x_{21}}& \frac{\partial y_{21}}{\partial x_{21}}& \frac{\partial y_{22}}{\partial x_{21}}\\ \frac{\partial y_{11}}{\partial x_{22}}& \frac{\partial y_{12}}{\partial x_{22}}& \frac{\partial y_{21}}{\partial x_{22}}& \frac{\partial y_{22}}{\partial x_{22}} \end{array} \right]. \end{aligned} $$
(6.17)

An example drawn directly from the original paper is presented below. These equations are a reproduction of equations 3–5 in McDonald and Swaminathan (1973). Assume we are given a matrix Y ,

$$\displaystyle \begin{aligned} Y = \left[ \begin{array}{cc} e^{x_{11}x_{12}}&sin(x_{11}+ x_{12})\\ log(x_{11}+x_{12}+x_{21})& x_{11}x_{12}x_{21}x_{22} \end{array} \right] \end{aligned} $$
(6.18)

with elements that are a function of another matrix X,

$$\displaystyle \begin{aligned} X = \left[ \begin{array}{cc} x_{11}&x_{12}\\ x_{21}&x_{22} \end{array} \right]. \end{aligned} $$
(6.19)

The derivative of Y with respect to the elements of X would result in

$$\displaystyle \begin{aligned} \frac{\partial Y}{\partial X} = \left[ \begin{array}{cccc} x_{12} e^{x_{11}x_{12}}& cos(x_{11}+x_{22})& \frac{1}{x_{11}+x_{12}+x_{21}}& x_{12}x_{21}x_{22}\\ x_{11} e^{x_{11}x_{12}}& 0& \frac{1}{x_{11}+x_{12}+x_{21}}& x_{11}x_{21}x_{22}\\ 0& 0& \frac{1}{x_{11}+x_{12}+x_{21}}& x_{11}x_{12}x_{22}\\ 0& cos(x_{11}+x_{22})& 0& x_{11}x_{12}x_{21} \end{array} \right]. \end{aligned} $$
(6.20)

Appendix 2: Matrix Differentiation of the Felmlee–Greenberg Model

Next we illustrate how the steps outlined above are performed using the two matrices A and B, from our model from Eq. (6.11). These matrices represent the deterministic portion of the state equation for Felmlee–Greenberg model Felmlee and Greenberg (1999). Below we differentiate these matrices with respect to a parameter vector Θ.

To begin, we reparameterize the model and place the f and m terms in the parameter vector; thus Θ = (a 1, b 1, a 2, b 2, f , m ). This allows us to express the A and B matrices as

$$\displaystyle \begin{aligned} A = \begin{bmatrix} -(\theta_{1}+\theta_{2}) & \theta_{2}\\ \theta_{4} & -(\theta_{3}+\theta_{4}) \end{bmatrix}, B = \begin{bmatrix} \theta_{1}\theta_{5}\\ \theta_{3}\theta_{6} \end{bmatrix}. \end{aligned}$$

The derivative of the matrix A with respect to the parameter vector Θ is

$$\displaystyle \begin{aligned} \frac{\partial A}{\partial \varTheta} = \begin{bmatrix} -1&0&0&0\\ -1&1&0&0\\ 0&0&0&-1\\ 0&0&1&-1\\ 0&0&0&0\\ 0&0&0&0 \end{bmatrix}. \end{aligned}$$

For the matrix B, the result is

$$\displaystyle \begin{aligned} \frac{\partial B}{\partial \varTheta} = \begin{bmatrix} \theta_5&0\\ 0&0\\ 0&\theta_6\\ 0&0\\ \theta_1&0\\ 0&\theta_3 \end{bmatrix}. \end{aligned}$$

This example is only a portion of what is required in the LSDE syntax for this model. Please see Appendix 3 for a complete listing of the LSDE syntax required to fit the model for positive affect.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Steele, J.S., Gonzales, J.E., Ferrer, E. (2018). Uses and Limitation of Continuous-Time Models to Examine Dyadic Interactions. In: van Montfort, K., Oud, J.H.L., Voelkle, M.C. (eds) Continuous Time Modeling in the Behavioral and Related Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-77219-6_6

Download citation

Publish with us

Policies and ethics