Skip to main content

A Continuous-Time Approach to Intensive Longitudinal Data: What, Why, and How?

  • Chapter
Continuous Time Modeling in the Behavioral and Related Sciences

Abstract

The aim of this chapter is to (a) provide a broad didactical treatment of the first-order stochastic differential equation model—also known as the continuous-time (CT) first-order vector autoregressive (VAR(1)) model—and (b) argue for and illustrate the potential of this model for the study of psychological processes using intensive longitudinal data. We begin by describing what the CT-VAR(1) model is and how it relates to the more commonly used discrete-time VAR(1) model. Assuming no prior knowledge on the part of the reader, we introduce important concepts for the analysis of dynamic systems, such as stability and fixed points. In addition we examine why applied researchers should take a continuous-time approach to psychological phenomena, focusing on both the practical and conceptual benefits of this approach. Finally, we elucidate how researchers can interpret CT models, describing the direct interpretation of CT model parameters as well as tools such as impulse response functions, vector fields, and lagged parameter plots. To illustrate this methodology, we reanalyze a single-subject experience-sampling dataset with the R package ctsem; for didactical purposes, R code for this analysis is included, and the dataset itself is publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The variance-covariance matrix of the variables Σ is a function of both the lagged parameters and the variance-covariance matrix of the innovations, vec(Σ) = (IΦΦ)−1 vec(Ψ), where vec(.) denotes the operation of putting the elements of an N × N matrix into an NN × 1 column matrix (Kim and Nelson 1999, p. 27).

  2. 2.

    Readers should note that there are multiple different possible ways to parameterize the CT stochastic process in integral form, and also multiple different notations used (e.g., Oravecz et al. 2011; Voelkle et al. 2012).

  3. 3.

    In general, there is no straightforward CT-VAR(1) representation of DT-VAR(1) models with real, negative eigenvalues. However it may be possible to specify more complex continuous-time models which do not exhibit positive autoregression. Notably, Fisher (2001) demonstrates how a DT-AR(1) model with negative autoregressive parameter can be modeled with the use of two continuous-time (so-called) Itô processes.

  4. 4.

    Similar functions can be used for deterministic systems (those without a random innovation part); however in these cases the term initial value is more typically used.

References

  • Aalen, O., Gran, J., Røysland, K., Stensrud, M., & Strohmaier, S. (2017). Feedback and mediation in causal inference illustrated by stochastic process models. Scandinavian Journal of Statistics, 45, 62–86. https://doi.org/10.1111/sjos.12286

    Article  MathSciNet  Google Scholar 

  • Aalen, O., Røysland, K., Gran, J., Kouyos, R., & Lange, T. (2016). Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms. Statistical Methods in Medical Research, 25(5), 2294–2314. https://doi.org/10.1177/0962280213520436

    Article  MathSciNet  Google Scholar 

  • Aalen, O., Røysland, K., Gran, J., & Ledergerber, B. (2012). Causality, mediation and time: A dynamic viewpoint. Journal of the Royal Statistical Society: Series A (Statistics in Society), 175(4), 831–861.

    Article  MathSciNet  Google Scholar 

  • Bisconti, T., Bergeman, C. S., & Boker, S. M. (2004). Emotional well-being in recently bereaved widows: A dynamical system approach. Journal of Gerontology, Series B: Psychological Sciences and Social Sciences, 59, 158–167. https://doi.org/10.1093/geronb/59.4.P158

    Article  Google Scholar 

  • Boker, S. M. (2002). Consequences of continuity: The hunt for intrinsic properties within parameters of dynamics in psychological processes. Multivariate Behavioral Research, 37(3), 405–422. https://doi.org/10.1207/S15327906MBR3703-5

    Article  Google Scholar 

  • Boker, S. M., Deboeck, P., Edler, C., & Keel, P. (2010a). Generalized local linear approximation of derivatives from time series. In S. Chow & E. Ferrar (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 179–212). Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Experimental Aging Research, 21, 77–93. https://doi.org/10.1080/03610739508254269

    Article  Google Scholar 

  • Boker, S. M., Montpetit, M. A., Hunter, M. D., & Bergeman, C. S. (2010b). Modeling resilience with differential equations. In P. Molenaar & K. Newell (Eds.), Learning and development: Individual pathways of change (pp. 183–206). Washington, DC: American Psychological Association. https://doi.org/10.1037/12140-011

    Chapter  Google Scholar 

  • Boker, S. M., Neale, M., & Rausch, J. (2004). Latent differential equation modeling with multivariate multi-occasion indicators. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Recent developments on structural equation models (pp. 151–174). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Boker, S. M., & Nesselroade, J. R. (2002). A method for modeling the intrinsic dynamics of intraindividual variability: Recovering parameters of simulated oscillators in multi-wave panel data. Multivariate Behavioral Research, 37, 127–160.

    Article  Google Scholar 

  • Boker, S. M., Staples, A. D., & Hu, Y. (2016). Dynamics of change and change in dynamics. Journal for Person-Oriented Research, 2(1–2), 34. https://doi.org/10.17505/jpor.2016.05

    Article  Google Scholar 

  • Bolger, N., & Laurenceau, J.-P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. New York, NY: The Guilford Press.

    Google Scholar 

  • Bringmann, L., Lemmens, L., Huibers, M., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the beck depression inventory-ii. Psychological Medicine, 45(4), 747–757. https://doi.org/10.1017/S0033291714001809

    Article  Google Scholar 

  • Bringmann, L., Pe, M., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., …Kuppens, P. (2016). Assessing temporal emotion dynamics using networks. Assessment, 23(4), 425–435. https://doi.org/10.1177/1073191116645909

  • Bringmann, L., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, …Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8, e60188. https://doi.org/10.1371/journal.pone.0060188

  • Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of ARMA time series models. In A. Maydue-Olivares & J. J. McArdle (Eds.), Psychometrics: A festschrift to Roderick P. McDonald (pp. 415–452). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chow, S., Ferrer, E., & Hsieh, F. (2011). Statistical methods for modeling human dynamics: An interdisciplinary dialogue. New York, NY: Routledge.

    Book  Google Scholar 

  • Chow, S., Ferrer, E., & Nesselroade, J. R. (2007). An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2), 283–321. https://doi.org/10.1080/00273170701360423

    Article  Google Scholar 

  • Chow, S., Ram, N., Boker, S., Fujita, F., Clore, G., & Nesselroade, J. (2005). Capturing weekly fluctuation in emotion using a latent differential structural approach. Emotion, 5(2), 208–225.

    Article  Google Scholar 

  • De Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker, E. (2017). Discrete- versus continuous-time modeling of unequally spaced ESM data. Frontiers in Psychology, 8, 1849. https://doi.org/10.3389/fpsyg.2017.01849

    Article  Google Scholar 

  • Deboeck, P. R., & Preacher, K. J. (2016). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 61–75.

    Article  MathSciNet  Google Scholar 

  • Denollet, J., & De Vries, J. (2006). Positive and negative affect within the realm of depression, stress and fatigue: The two-factor distress model of the Global Mood Scale (GMS). Journal of Affective Disorders, 91(2), 171–180. https://doi.org/10.1016/j.jad.2005.12.044

    Article  Google Scholar 

  • Dormann, C., & Griffin, M. A. (2015). Optimal time lags in panel studies. Psychological Methods, 20(4), 489. https://doi.org/10.1037/met0000041

    Article  Google Scholar 

  • Driver, C., Oud, J. H. L., & Voelkle, M. (2017). Continuous time structural equation modelling with r package ctsem. Journal of Statistical Software, 77, 1–35. https://doi.org/10.18637/jss.v077.i05

    Article  Google Scholar 

  • Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling. Psychological Methods. Advance online publication. http://dx.doi.org/10.1037/met0000168

    Google Scholar 

  • Fisher, M. (2001). Modeling negative autoregression in continuous time. http://www.markfisher.net/mefisher/papers/continuous_ar.pdf

  • Gault-Sherman, M. (2012). It’s a two-way street: The bidirectional relationship between parenting and delinquency. Journal of Youth and Adolescence, 41, 121–145. https://doi.org/10.1007/s10964-011-9656-4

    Article  Google Scholar 

  • Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child Development, 58, 80–92. https://doi.org/10.2307/1130293

    Article  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438. https://doi.org/10.2307/1912791

    Article  Google Scholar 

  • Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individual: Rationale and application of multivariate time series analysis. Multivariate Behavioral Research, 40(2), 207–233. https://doi.org/10.1207/s15327906mbr4002_3

    Article  Google Scholar 

  • Hamaker, E. L., & Grasman, R. P. P. P. (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492. https://doi.org/10.3389/fpsyg.2014.01492

    Article  Google Scholar 

  • Hamaker, E. L., Kuiper, R., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889

    Article  Google Scholar 

  • Hamerle, A., Nagl, W., & Singer, H. (1991). Problems with the estimation of stochastic differential equations using structural equations models. Journal of Mathematical Sociology, 16(3), 201–220. https://doi.org/10:1080=0022250X:1991:9990088

    Article  Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Horn, E. E., Strachan, E., & Turkheimer, E. (2015). Psychological distress and recurrent herpetic disease: A dynamic study of lesion recurrence and viral shedding episodes in adults. Multivariate Behavioral Research, 50(1), 134–135. https://doi.org/10.1080/00273171.2014.988994

    Article  Google Scholar 

  • Ichii, K. (1991). Measuring mutual causation: Effects of suicide news on suicides in Japan. Social Science Research, 20, 188–195. https://doi.org/10.1016/0049-089X(91)90016-V

    Article  Google Scholar 

  • Johnston, J., & DiNardo, J. (1997). Econometric methods (4th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  • Kim, C.-J., & Nelson, C. R. (1999). State-space models with regime switching: Classical and Gibbs-sampling approaches with applications. Cambridge, MA: The MIT Press. https://doi.org/10.2307/2669796

  • Kossakowski, J., Groot, P., Haslbeck, J., Borsboom, D., & Wichers, M. (2017). Data from critical slowing down as a personalized early warning signal for depression. Journal of Open Psychology Data, 5(1), 1.

    Article  Google Scholar 

  • Koval, P., Kuppens, P., Allen, N. B., & Sheeber, L. (2012). Getting stuck in depression: The roles of rumination and emotional inertia. Cognition and Emotion, 26, 1412–1427.

    Article  Google Scholar 

  • Kuiper, R. M., & Ryan, O. (2018). Drawing conclusions from cross-lagged relationships: Re-considering the role of the time-interval. Structural Equation Modeling: A Multidisciplinary Journal. https://doi.org/10.1080/10705511.2018.1431046

  • Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21(7), 984–991. https://doi.org/10.1177/0956797610372634

    Article  Google Scholar 

  • Kuppens, P., Sheeber, L. B., Yap, M. B. H., Whittle, S., Simmons, J., & Allen, N. B. (2012). Emotional inertia prospectively predicts the onset of depression in adolescence. Emotion, 12, 283–289. https://doi.org/10.1037/a0025046

    Article  Google Scholar 

  • Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up: Associations between affect and vertical position. Psychological Science, 15(4), 243–247. https://doi.org/10.1111/j.0956-7976.2004.00659.x

    Article  Google Scholar 

  • Moberly, N. J., & Watkins, E. R. (2008). Ruminative self-focus and negative affect: An experience sampling study. Journal of Abnormal Psychology, 117, 314–323. https://doi.org/10.1037/0021-843X.117.2.314

    Article  Google Scholar 

  • Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45(1), 3–49.

    Article  MathSciNet  Google Scholar 

  • Oravecz, Z., & Tuerlinckx, F. (2011). The linear mixed model and the hierarchical Ornstein–Uhlenbeck model: Some equivalences and differences. British Journal of Mathematical and Statistical Psychology, 64(1), 134–160. https://doi.org/10.1348/000711010X498621

    Article  Google Scholar 

  • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic difference equation model for affective dynamics. Psychological Methods, 16, 468–490. https://doi.org/10.1037/a0024375

    Article  Google Scholar 

  • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2016). Bayesian data analysis with the bivariate hierarchical Ornstein-Uhlenbeck process model. Multivariate Behavioral Research, 51(1), 106–119. https://doi.org/10.1080/00273171.2015.1110512

    Article  Google Scholar 

  • Oud, J. H. L. (2007). Continuous time modeling of reciprocal relationships in the cross-lagged panel design. In S. M. Boker & M. J. Wenger (Eds.), Data analytic techniques for dynamic systems in the social and behavioral sciences (pp. 87–129). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal research with latent variables (pp. 201–244). New York, NY: Springer. https://doi.org/10.1007/978-3-642-11760-2-7

    Chapter  Google Scholar 

  • Oud, J. H. L., & Jansen, R. A. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199–215. https://doi.org/10.1007/BF02294374

    Article  MathSciNet  Google Scholar 

  • Oud, J. H. L., van Leeuwe, J., & Jansen, R. (1993). Kalman filtering in discrete and continuous time based on longitudinal lisrel models. In Advances in longitudinal and multivariate analysis in the behavioral sciences (pp. 3–26). Nijmegen: ITS.

    Google Scholar 

  • Reichardt, C. S. (2011). Commentary: Are three waves of data sufficient for assessing mediation? Multivariate Behavioral Research, 46(5), 842–851.

    Article  Google Scholar 

  • Rovine, M. J., & Walls, T. A. (2006). Multilevel autoregressive modeling of interindividual differences in the stability of a process. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 124–147). New York, NY: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195173444.003.0006

    Chapter  Google Scholar 

  • Schuurman, N. K., Ferrer, E., de Boer-Sonnenschein, M., & Hamaker, E. L. (2016). How to compare cross-lagged associations in a multilevel autoregressive model. Psychological methods, 21(2), 206–221. https://doi.org/10.1037/met0000062

    Article  Google Scholar 

  • Steele, J. S., & Ferrer, E. (2011). Latent differential equation modeling of selfregulatory and coregulatory affective processes. Multivariate Behavioral Research, 46(6), 956–984. https://doi.org/10.1080/00273171.2011.625305

    Article  Google Scholar 

  • Strogatz, S. H. (2014). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Boulder, CO: Westview press.

    MATH  Google Scholar 

  • Voelkle, M., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66(1), 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x

    Article  MathSciNet  Google Scholar 

  • Voelkle, M., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176–192. https://doi.org/10.1037/a0027543

    Article  Google Scholar 

  • Watkins, M. W., Lei, P.-W., & Canivez, G. L. (2007). Psychometric intelligence and achievement: A cross-lagged panel analysis. Intelligence, 35, 59–68. https://doi.org/10.1016/j.intell.2006.04.005

    Article  Google Scholar 

Download references

Acknowledgment

We thank an editor and anonymous reviewer for helpful comments that led to improvements in this chapter. The work of the authors was supported by grants from the Netherlands Organization for Scientific Research (NWO Onderzoekstalent 406-15-128) to Oisín Ryan and Ellen Hamaker, and (NWO VENI 451-16-019) to Rebecca Kuiper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oisín Ryan .

Editor information

Editors and Affiliations

2.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

SupplementaryMaterialCh.02.R (ZIP 47kb)

Appendix: Matrix Exponential

Appendix: Matrix Exponential

Similar to the scalar exponential, the matrix exponential can be defined as an infinite sum

$$\displaystyle \begin{aligned} \boldsymbol{e}^{\boldsymbol{A}}=\sum_{k=0}^{\infty}\frac{1}{k!}\boldsymbol{A}^k \end{aligned}$$

The exponential of a matrix is not equivalent to taking the scalar exponential of each element of the matrix, unless that matrix is diagonal. The exponential of a matrix can be found using an eigenvalue decomposition

$$\displaystyle \begin{aligned} \boldsymbol{A}=\boldsymbol{V}\boldsymbol{D}\boldsymbol{V^{-1}} \end{aligned}$$

where V is a matrix of eigenvectors of A and D is a diagonal matrix of the eigenvalues of A (cf. Moler and Van Loan 2003). The matrix exponential of A is given by

$$\displaystyle \begin{aligned} \boldsymbol{e}^{\boldsymbol{A}} = \boldsymbol{V} \boldsymbol{e}^{\boldsymbol{D}}\boldsymbol{V}^{-1} \end{aligned}$$

where e D is the diagonal matrix whose entries are the scalar exponential of the eigenvalues of A. When we want to solve for the matrix exponential of a matrix multiplied by some constant Δt, we get

$$\displaystyle \begin{aligned} \boldsymbol{e}^{\boldsymbol{A}\varDelta t} = \boldsymbol{V}\boldsymbol{e}^{\boldsymbol{D}\varDelta t}\boldsymbol{V}^{-1} \end{aligned} $$
(2.12)

Take it that we have a 2 × 2 square matrix given by

$$\displaystyle \begin{aligned} \boldsymbol{A} = \left[ \begin{array}{cc} a & b \\ c & d \\ \end{array} \right] \end{aligned}$$

and we wish to solve for e AΔt. The eigenvalues of A are given by

$$\displaystyle \begin{aligned} \lambda_1 &= \frac{1}{2}\left(a+d-\sqrt{a^2 + 4bc - 2ad + d^2}\right)\\ \lambda_2 &= \frac{1}{2}\left(a+d+\sqrt{a^2 + 4bc - 2ad + d^2}\right) \end{aligned} $$

where we will from here on denote

$$\displaystyle \begin{aligned} R = \sqrt{a^2 + 4bc - 2ad + d^2} \end{aligned}$$

for notational simplicity. The exponential of the diagonal matrix made up of eigenvalues multiplied by the constant Δt is given by

$$\displaystyle \begin{aligned} \boldsymbol{e}^{\boldsymbol{D}\varDelta t} = \left[ \begin{array}{cc} e^{\frac{1}{2}(a+d-R) \varDelta t} & 0 \\ 0 &e^{\frac{1}{2}(a+d+R)\varDelta t} \\ \end{array} \right] \end{aligned}$$

The matrix of eigenvectors of A is given by

$$\displaystyle \begin{aligned} \boldsymbol{V} = \left[ \begin{array}{cc} \frac{a-d-R}{2c} & \frac{a-d+R}{2c} \\ 1 & 1 \\ \end{array} \right] \end{aligned}$$

assuming c ≠ 0, with inverse

$$\displaystyle \begin{aligned} \boldsymbol{V}^{-1} = \left[ \begin{array}{cc} \frac{-c}{R} & \frac{a-d+R}{2R} \\ \frac{c}{R} & \frac{-a+d+R}{2R} \\ \end{array} \right]. \end{aligned}$$

Multiplying V e D V −1 gives us

$$\displaystyle \begin{aligned} \boldsymbol{e}^{\boldsymbol{A}\varDelta t} = \left[ \begin{array}{cc} \frac{R-a+d}{2R}e^{\lambda_1 \varDelta t} + \frac{R+a-d}{2R}e^{\lambda_2 \varDelta t} & \frac{b(-e^{\lambda_1 \varDelta t} + e^{\lambda_2 \varDelta t})}{R} \\ \frac{c(-e^{\lambda_1 \varDelta t} + e^{\lambda_2 \varDelta t})}{R} & \frac{R+a-d}{2R}e^{\lambda_1 \varDelta t} + \frac{R-a+d}{2R}e^{\lambda_2 \varDelta t} \\ \end{array} \right] {} \end{aligned} $$
(2.13)

Note that we present here only a worked out example for a 2 × 2 square matrix. For larger square matrices (representing models with more variables), the eigenvalue decomposition remains the same although the terms for the eigenvalues, eigenvectors, and determinants become much less feasible to present.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Ryan, O., Kuiper, R.M., Hamaker, E.L. (2018). A Continuous-Time Approach to Intensive Longitudinal Data: What, Why, and How?. In: van Montfort, K., Oud, J.H.L., Voelkle, M.C. (eds) Continuous Time Modeling in the Behavioral and Related Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-77219-6_2

Download citation

Publish with us

Policies and ethics