Skip to main content
  • 164 Accesses

Abstract

In this chapter sediment discharge and the clogging rate are analysed in order to estimate the lifespan of Cuejdel Lake. The silting processes were identified through indirect calculation methods of soil erosion (USLE) and through geo-physical investigations (direct methods). Based on the indirect methodology of alluvial budget, the result indicates for the catchment area an alluvial production of 3288.5 m3/year (3.02 t/ha/year), in 23 years reaching ca. 75,635.93 m3. From the direct investigation methods, we mention the ground-penetrating radar (GPR) technology, a geo-physical tool accepted long time ago in scientific practice, but unfortunately, shortly used in limnological studies. The bathymetric measurements were concretized by the reconstruction of flooded valley and the achievement of the map of thickness sediments accumulated in the lake basin. In the present time, the water volume was reduced with 297,654.77 m3, from which 103,988.87 m3 were replaced by sediment deposits. The sediment thickness is between 0.1 and 3.6 m. The thickness class 0.1–1.0 m corresponds to 8.552 ha (60.7%) from the lake bottom, 1.0–2.0 m corresponds to 4.676 ha (33.32%), and the thickness class >2.01 m covers the rest of 8326.5 m2 (5.93%). The clogging thickness rate is between 1 and 16 cm/year which means a medium value of 4521.26 m3/year. This value, related to the catchment basin (8.94 km2) and to an effluence rate of 33%, indicates a medium production of sediments—4.33 t/ha/year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arghiriade C (1977) Rolul hidrologic al pădurii. Ceres Publishing, Bucharest

    Google Scholar 

  • Banks WSL, Johnson CD (2011) Collection, processing, and interpretation of ground-penetrating radar data to determine sediment thickness at selected location in deep Creek Lake, Garrett County, Maryland. US Geol Survey–Scientific Investigations Report 2011–5223, Reston, Virginia

    Google Scholar 

  • Bristow CS, Jol HM (2003) An introduction to ground penetrating radar (GPR) in sediments. In: Bristow CS, Jol HM (eds) Ground penetrating radar in sediments. SP Geol Soc, London 211:1–7

    Google Scholar 

  • Bryan S, Jeffrey PD (2006) The influence of seasonal precipitation and temperature regimes on lake levels in the northeastern United States during the Holocene. Quatern Res 65:44–56

    Article  Google Scholar 

  • Buynevich IV, Fitzgerald DM (2003) High-resolution subsurface (GPR) imaging and sedimentology of coastal ponds, Maine, USA: implications for Holocene back-barrier evolution. J Sediment Res 73(4):559–571

    Article  Google Scholar 

  • Charlie SB, Harry MJ (2003) An introduction to ground penetrating radar (GPR) in sediments. Geol Soc Bull, SP London 211:1–7

    Article  Google Scholar 

  • Conyers LB (2004) Ground-penetrating radar for archaeology. Alta Mira Press, Walnut Creek

    Google Scholar 

  • Dagenbach A, Buchner JS, Klenk P, Roth K (2013) Identifying a parameterisation of the soil water retention curve from on-ground GPR measurements. Hydrol Earth Syst Sci 17:611–618

    Article  Google Scholar 

  • Denziman C, Brevik EC, Doolittle J (2010) Ground-penetrating radar investigation of a rapidly developed small island in a lake in southern Georgia, USA. J Cave and Karst Stud 72(2):94–99

    Article  Google Scholar 

  • Derald GS, Harry MJ (1995) Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in quaternary sediments. J App Geophys 33:93–100

    Article  Google Scholar 

  • Diaconu C (1992) Probleme de metodica determinării curbelor teoretice ale probabilităţilor de depăşire (asigurare) în hidrologie. Hidrotehnica–Extras 37(4–5), Bucharest

    Google Scholar 

  • Elliot JG, Gellis AC, Aby SC (1999) Evolution of arroyos: incised channel of the southwestern United States. In: Simon A (ed) Darby SE. Incised River Channels, Wiley, pp 153–185

    Google Scholar 

  • Gabbi J, Farinotti D, Bauder A, Maurer H (2012) Ice volume distribution and implications on runoff projections in a glacierized catchment. Hydrol Earth Syst Sci 16:4543–4556

    Article  Google Scholar 

  • Ichim I (1986) Sistemul aluviunilor. In: Received of 1st Symposium–Provenienţa şi efluenţa aluviunilor, 5–96 November 1986, 1:1–31, Piatra Neamţ

    Google Scholar 

  • Ichim I, Rădoane N, Rădoane M, Grasu C, Miclăuş C (1998) Dinamica sedimentelor. Aplicaţie la râul Putna-Vrancea. Technical Publishing, Bucharest

    Google Scholar 

  • McClymont AF, Hayashi M, Bentley LR, Muir D, Ernst E (2010) Groundwater flow and storage within an alpine meadow-talus complex. Hydrol Earth Syst Sci 14:859–872

    Article  Google Scholar 

  • Mihu–Pintilie A, Romanescu G (2011) Morphometric and morphological suitability of the relief from the Crucii (Cuejdel) Lake basin (Stânişoarei Mountains). In: Pandi G, Moldovan F (eds) Proceedings of the air and water components of the environment, Babeș–Bolyai University, Cluj, 18–19 March 2011, vol 1, pp 305–313

    Google Scholar 

  • Mihu-Pintilie A, Romanescu G, Stoleriu CC, Nicu IC, Asăndulesei A, Schmaltz E (2014a) Natural dam lakes from Cuejdiu watershed (Stânișoarei Mountains)—Non–invasive methods used for bathymetric maps. In: In: Gâştescu P, Marszelewski W, Breţcan P (eds) Proceedings conference of the water resources and wetlands, Tulcea, 11–13 September 2014, vol 1, pp 130–137

    Google Scholar 

  • Mihu-Pintilie A, Romanescu G, Stoleriu C (2014b) The seasonal changes of the temperature, pH and dissolved oxygen in the Cuejdel Lake, Romania. Carpat J Earth Environ Sci 9(2):113–123

    Google Scholar 

  • Mihu-Pintilie A, Paiu M, Breabăn IG, Romanescu G (2014c) Status of water quality in Cuejdi hydrographic basin from Eastern Carpathian, Romania. In: SGEM–proceedings of the 14th international multidisciplinary scientific geoconferences–hydrology and water resources, 18–24 June, Albena, vol 14, no 1, pp 639–646

    Google Scholar 

  • Mihu-Pintilie A, Asăndulesei A, Nicu IC, Stoleriu CC, Romanescu G (2016) Using GPR for assessing the volume of sediments from the largest natural dam lake of the Eastern Carpathians: Cuejdel Lake, Romania. Environ Earth Sci 75:710. https://doi.org/10.1007/s12665-016-5537-1

    Article  Google Scholar 

  • Monnier S, Kinnard C, Surazakov A, Bossy W (2014) Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30° 08′S, 69° 55′W). Geomorphology 207:126–140

    Article  Google Scholar 

  • Moorman BJ, Michel FA (1997) Bathymetric mapping and sub-bottom profiling through lake ice with ground-penetrating radar. J Paleolimnology 18:61–73

    Article  Google Scholar 

  • Moțoc M, Stănescu P, Taloescu I (1979) Actual conceptions regarding erosional phenomenon and it control. Inst Soil Sci Agrochemistry, Agriculture Library, Bucharest

    Google Scholar 

  • Ndiaye M, Clerc N, Gorin G, Girardclos S, Fiore J (2014) Lake Neuchâtel (Switzerland) seismic stratigraphic record points to the simultaneous Würmian deglaciation of the Rhône Glacier and Jura Ice Cap. Quat Sci Rev 85:1–19

    Article  Google Scholar 

  • Nicu IC (2013) Analiza riscurilor hidrogeomorfologice care afectează siturile arheologice eneolitice din bazinul hidrografic Valea Oii (Bahlui)–Studii de caz. Alexandru Ioan Cuza University of Iaşi, Disertation

    Google Scholar 

  • Pan X, Zhang J, Huang P, Roth K (2012) Estimating field-scale soil water dynamics at a heterogeneous site using multi-channel GPR. Hydrol Earth Syst Sci 16:4361–4372

    Article  Google Scholar 

  • Plado J, Sibul I, Mustasaar M, Jõeleht A (2011) Ground-penetrating radar study of the Rahivere peat bog, eastern Estonian. Estonian J Earth Sci 60:31–42

    Article  Google Scholar 

  • Proulx-Mclnnis S, St-Hilaire A, Rousseau AN, Jutras S (2013) A review of ground-penetrating radar studies related to peatland stratigraphy with a case study on the determination of peat thickness in a northern boreal fen in Quebec, Canada. Progress in Physical Geography 37(6):767–786

    Article  Google Scholar 

  • Rădoane N (2002) Un nou lac de baraj natural în bazinul Bistriţei Moldoveneşti-Lacul Cuejdel. Stud Cerc Geograph 49:76–82

    Google Scholar 

  • Reynolds JM (2011) An Introduction to Applied and Environmental Geophysics–2nd Edition. Wiley Blackwell

    Google Scholar 

  • Sass O, Krautblatter M, Morche D (2007) Rapid lake infill following major rockfall (bergsturz) events revealed by ground-penetrating radar (GPR) measurements, Reintal, German Alps. The Holocene 17(7):965–976

    Article  Google Scholar 

  • Schwamborn GJ, Dix JK, Bull JM, Rachold V (2002) High-resolution seismic and ground penetrating radar-geophysical profiling of a Thermokarst Lake in the Western Lena Delta, Northern Siberia. Permafrost Periglac Process 13:259–269

    Article  Google Scholar 

  • Shuman B, Donnelly JP (2006) The influence of seasonal precipitation and temperature regimes on lake levels in the northeastern United States during the Holocene. Quat Res 65:44–56

    Article  Google Scholar 

  • Smith DG, Jol HM (1995) Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in quaternary sediments. J Appl Geophys 33:93–100

    Article  Google Scholar 

  • Stoleriu CC, Romanescu G, Romanescu AM, Mihu-Pintilie A (2015) Morpho-bathymetrical conditions and the silting rate in Stanca-Costesti reservoir (Romania). Wulfenia J 22(2):451–470

    Google Scholar 

  • Syvitski JPM, Milliman J (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geology 115:1–19

    Article  Google Scholar 

  • Surdeanu V (1998) Geografia terenurilor degradate–Alunecări de teren. Cluj University Press, Cluj-Napoca

    Google Scholar 

  • Vanmaercke M, Obreja F, Poesen J (2014) Seismic control on contemporary sediment export in the Siret river catchment, Romania. Geomorphology 216:247–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alin Mihu-Pintilie .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mihu-Pintilie, A. (2018). Nature of Lacustrine Sediments and Clogging Rate. In: Natural Dam Lake Cuejdel in the Stânişoarei Mountains, Eastern Carpathians. Springer, Cham. https://doi.org/10.1007/978-3-319-77213-4_6

Download citation

Publish with us

Policies and ethics