Advertisement

Genesis of the Cuejdel Lake and the Evolution of the Morphometric and Morpho-Bathymetric Parameters

  • Alin Mihu-Pintilie
Chapter

Abstract

The present lacustrine basin of Cuejdel Lake has been forming in the upper basin of Cuejdiu river at about 1.5 km upstream Cuejdel brook. Its origin is based on a large landslide that produced the rock displacement during the summer of 1991. The morphometric parameters for landslide were extracted from digital terrain model (DTM) and orthophoto plans (Ed. 2012, 2010 and 2006) using GIS software (ArcGIS, Global Mapper and TNTMips). In order to determine the morpho-bathymetric parameters of the lake basin, direct methods were used: Dual Frequency Echo Sounder for bathymetric survey and Leica System 1200 (TCR 1201 and GPS 1200) for aquatic surfaces and shorelines. From measurements made over the entire surface of the lake between 2011 and 2014, approx. 45,000 bathymetric levels resulted, on which several digital elevation models were conducted of the lacustrine depression with 0.25 m/pixel resolution (DEM 2011 and DEM 2014). The bathymetric maps results were used to determine the morphometric (aquatic surface or water mirror surface, length and width of the lake, lake major axis and minor axis, and perimeter or length of shoreline) and bathymetric parameters (actual shape of lacustrine basin, average and maximum depth, average slope of the lake bottom, water volume expressed as the total or partial volumes).

Keywords

Echo-sounding Lacustrine basin Bathymetry Morphometric parameters Evolution 

References

  1. Gâştescu P (1971) Lacurile din România–limnologie regională. Romanian Academy Publishing House, BucharestGoogle Scholar
  2. Grigore M, Ielenicz M (1972) Cartografierea porniturilor de teren. Bull Soc Sci Geogra 1(70):236–242Google Scholar
  3. Håkanson L (1981) A Manual of Lake Morphometry. Springer, BerlinCrossRefGoogle Scholar
  4. Ichim I (1972) Văile elementare din Munții Stânișoarei și raportul lor cu structura și litologia. Stud Cerc Geol Geofiz Geogr, S Geogr 19(2):175–182Google Scholar
  5. Ichim I (1973) Rôle de la structure et de la lithologie dans la morphologie des vallées des Monts Stânişoarei. Stud Geomorph Carp–Balc 7 (Bucharest)Google Scholar
  6. Ichim I, Rădoane N, Rădoane M (1996) Procese geomorfologice cu intervale de recurenţă mare în arealul munţilor flişului. Exemplificări din Judeţul Neamţ (Geomorphological process with high frequencies in flysch mountains area. Examples from Neamț County). In: Studii şi cercetări—extras 8, Muzeul de Ştiinţe Naturale Publishing, Piatra-Neamţ, p 15Google Scholar
  7. Kalff J (2003) Limnology-Inland Water Ecosystems. Prentice-Hall, Upper Saddle River, New JerseyGoogle Scholar
  8. Mihu–Pintilie A, Romanescu G (2011) Morphometric and morphological suitability of the relief from the Crucii (Cuejdel) Lake basin (Stânişoarei Mountains). In: Pandi G, Moldovan F (eds) Proceedings of the air and water components of the environment, vol 1. Babeș–Bolyai University, Cluj, 18–19 March 2011, pp 305–313Google Scholar
  9. Mihu-Pintilie A, Romanescu G, Stoleriu C (2012) Morpho–bathymetric parameters of recess Crucii (Cuejdel) Lake (Stânişoarei Mountains). In: Pandi G, Moldovan F (eds) Proceedings of the air and water components of the environment, vol 1. Babeș–Bolyai University, Cluj, 23–24 March 2012, pp 445–452Google Scholar
  10. Mihu-Pintilie A, Romanescu G, Stoleriu CC, Nicu IC, Asăndulesei A, Schmaltz E (2014a) Natural dam lakes from Cuejdiu watershed (Stânișoarei Mountains)—Non–invasive methods used for bathymetric maps. In: Gâştescu P, Marszelewski W, Breţcan P (eds) Proceedings conference of the water resources and wetlands, vol 1. Tulcea, 11–13 September 2014, pp 130–137Google Scholar
  11. Mihu-Pintilie A, Romanescu G, Stoleriu C (2014b) The seasonal changes of the temperature, pH and dissolved oxygen in the Cuejdel lake. Romania. Carpat J Earth Enviro Sci 9(2):113–123Google Scholar
  12. Mihu-Pintilie A, Paiu M, Breabăn IG, Romanescu G (2014c) Status of water quality in Cuejdi hydrographic basin from Eastern Carpathian, Romania. In: SGEM–Proceedings of the 14th international multidisciplinary scientific geoconferences—hydrology and water resources, vol 14, issue 1. 18–24 June, Albena, pp 639–646Google Scholar
  13. Mihu-Pintilie A, Romanescu G, Stoleriu C, Stoleriu O (2014d) Ecological features and conservation proposal for the largest natural dam lake in the Romanian Carpathians-Cuejdel lake. Int J Conserv Sci 5(2):243–252Google Scholar
  14. Mihu-Pintilie A, Asăndulesei A, Nicu IC, Stoleriu CC, Romanescu G (2016) Using GPR for assessing the volume of sediments from the largest natural dam lake of the Eastern Carpathians: Cuejdel Lake, Romania. Environmental Earth Sciences 75:710.  https://doi.org/10.1007/s12665-016-5537-1
  15. Minea I, Romanescu G (2007) Hidrologia mediilor continentale–Aplicaţii practice. Demiurg Publishing House, IaşiGoogle Scholar
  16. Neumann J (1959) Maximum Depth and Average Depth of Lakes. Can Fish Res Bd 16:923–927CrossRefGoogle Scholar
  17. Rădoane N (2002) Un nou lac de baraj natural în bazinul Bistriţei Moldoveneşti-Lacul Cuejdel. Stud Cerc Geograph 49:76–82Google Scholar
  18. Romanescu G, Stoleriu C, Enea A (2013) Limnology of the Red Lake, Romania. An interdisciplinary study. Springer, Dordrecht, Heidelberg, New York, LondonCrossRefGoogle Scholar
  19. Rusu C, Mărgărint MC, Rusu E, Boamfă I (2002), Noi arii de interes ecologic din Moldova: Parcul Forestier Vânători—Neamţ şi Lacul Crucii (bazinul hidrografic al Cuejdelului). Revista Terra, 1–2 (Bucharest)Google Scholar
  20. Stoleriu C, Stoleriu O, Mihu-Pintilie A (2014) Scientific and tourist value of natural dam lakes in the Carpathian Mountains (Romania). Case study: Red, Cuejdel and Iezerul Sadovei Lakes. In: SGEM–Proceedings of the 14th International Multidisciplinary Scientific Geoconferences–Ecology and Environmental Protection, vol 14, issue 2. 18–24 June, Albena, pp 625–632Google Scholar
  21. Strahler AM (1952) Hypsometric (area-altitude) analysis of erosional topography. Bull Geol Soc America 63:1117–1142CrossRefGoogle Scholar
  22. Straškraba M (1980) The effect of physical variables of freshwater production: analyses based on models. In: Le C, Lowe-McConnell RH (eds) The functioning of freshwater ecosystems, vol 1. Cambridge University Press, Cambridge pp 13–84Google Scholar
  23. Surdeanu V (1986) Landslides and their role in reservoir silting. Z Geomorph NF Suppl–Bd 58:165–171 (Berlin–Stuttgart)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Research Department—Field Science“Alexandru Ioan Cuza” University of IaşiIaşiRomania

Personalised recommendations