Skip to main content

Real-Time PLC Implementations of Fractional Order Operator

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

Abstract

The paper is intended to show a real time implementation of an elementary fractional order, integro-differential operator at PLC platform. The considered element is approximated with the use of known discrete PSE and CFE approximations. The operator we deal with is a crucial part of fractional order PID controller and another FO control algorithms. As an example the implementation at SIEMENS SIMATIC S7 1500 platform is presented. The both proposed approximations PSE and CFE were compared in the sense of accuracy, convergence and PLC execution time. Results of experiments show, that the PLC implementation of the fractional order element using the both approximations can be done with the use of object-oriented approach, the accuracy of approximation is determined by its order. The CFE approximation is much more faster than PSE and its accuracy is comparable to accuracy of PSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Aloui, M.A.: Dicretization methods of fractional parallel PID Controllers. In: Proceedings of 6th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2009), pp. 327–330 (2009)

    Google Scholar 

  2. Berger, H.: Automating with STEP 7 in STL and SCL: SIMATIC S7-300/400 Programmable Controllers, SIEMENS 2012 (2012)

    Google Scholar 

  3. Berger, H.: Automating with SIMATIC: Controllers. Software, Programming, Data, SIEMENS 2013 (2013)

    Google Scholar 

  4. Caponetto, R., Dongola, G., Fortuna, I., Petras, I.: Fractional Order Systems. Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing, New Jersey (2010)

    Google Scholar 

  5. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Das, S., Pan, I.: Intelligent Fractional Order Systems and Control. An Introduction. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  8. Douambi, A., Charef, A., Besancon, A.V.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Polish Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  10. Frey, G., Litz, L.: Formal methods in PLC programming. In: Proceedings of the IEEE Conference on Systems Man and Cybrenetics (SMC 2000), Nashville, 8–11 October 2000, pp. 2431–2436 (2000)

    Google Scholar 

  11. John, K.H., Tiegelkamp, M.: IEC 61131-3: Programming Industrial Automation Systems. Concepts and Programming Languages, Requirements for Programming Systems, Decision Making Aids. Springer, Heidelberg (2010)

    Google Scholar 

  12. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  13. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)

    MATH  Google Scholar 

  14. Lewis, R.W.: Programming industrial control systems using IEC 1131-3 IEE 1998 (1998)

    Google Scholar 

  15. Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(2010), 823–831 (2010)

    Article  Google Scholar 

  16. Mitkowski, W., Oprzedkiewicz, K.: Optimal sample time estimation for the finite-dimensional discrete dynamic compensator implemented at the soft PLC platform. In: Korytowski, A., Mitkowski, W., Szymkat, M. (Eds.), 23rd IFIP TC 7 Conference on System Modelling and Optimization: Cracow, 23–27 July 2007. Book of abstracts, AGH University of Science and Technology. Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Krakow, pp. 77–78 (2007)

    Google Scholar 

  17. Mitkowski, W., Oprzedkiewicz, K.: Fractional-order \(P2D^\beta \) controller for uncertain parameter DC motor. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Advances in the Theory and Applications of Non-integer Order Systems: 5th Conference on Non-integer Order Calculus and Its Applications, 4–5 July 2013, Cracow. LNEE, vol. 257, pp. 249–259. Springer, Switzerland (2013). ISSN 1876-1100 https://doi.org/10.1007/978-3-319-00933-9_23

  18. Oprzedkiewicz, K., Chochol, M., Bauer, W., Meresinski, T.: Modeling of elementary fractional order plants at PLC SIEMENS platform. In: Latawiec, K.J., Lukaniszyn, M., Stanislawski, R. (eds.) Advances in Modelling and Control of Non-integer Order Systems. LNEE, vol. 320, pp. 265–273. Springer, Switzerland (2015). https://doi.org/10.1007/978-3-319-09900-2_25

  19. Ostalczyk, P.: Equivalent descriptions of a discrete time fractional-order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22(3), 533–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ostalczyk, P.: Discrete Fractional Calculus. Applications in Control and Image Processing. Series in Computer Vision, vol. 4. World Scientific Publishing, Singapore (2016)

    MATH  Google Scholar 

  21. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21(2011), 69–81 (2011)

    Article  MATH  Google Scholar 

  22. Petras, I.: Fractional order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)

    Google Scholar 

  23. Petras, I.: Realization of fractional order controller based on PLC and its utilization to temperature control. Transfer inovacii 14, 34–38 (2009)

    Google Scholar 

  24. Petras, I.: Tuning and implementation methods for fractional-order controllers. Fract. Calc. Appl. Anal. 15(2), 2012 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petras, I.: http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod1.m

  26. Petras, I.: http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod2.m

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  28. Sierociuk, D., Macias, M.: New recursive approximation of fractional order derivative and its application to control. In: Proceedings of 17th International Carpathian Control Conference (ICCC), pp. 673–678 (2016)

    Google Scholar 

  29. Stanislawski, R., Latawiec, K.J., Lukaniszyn, M.: A Comparative analysis of Laguerre-based approximators to the Grunwald-Letnikov fractional-order difference. Math. Prob. Eng. 2015, 10 (2015). https://doi.org/10.1155/2015/512104. Article ID 512104

    Article  MathSciNet  Google Scholar 

  30. Valerio, D., da Costa, J.S.: Tuning of fractional PID controllers with Ziegler Nichols type rules. Signal Process. 86, 2771–2784 (2006)

    Article  MATH  Google Scholar 

  31. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(2003), 349–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The paper was sponsored by AGH University grant no. 11.11.120.815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzędkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oprzędkiewicz, K., Gawin, E., Gawin, T. (2018). Real-Time PLC Implementations of Fractional Order Operator. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics