Skip to main content

Energy Consumption Optimal Control of the Train Movement

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

  • 2654 Accesses

Abstract

The paper is devoted to the solution of the energy minimization problem for a moving train. The train movement is governed by the system of the first order ordinary differential equations where the train speed and the distance along the track are the state variables. The provided locomotive power depends on the control function. The generated traction force is assumed to depend on the velocity of the train and on the control function. Each non-negative value of the control function determines a traction force control while negative values determine a braking force control. The cost functional is defined as the train energy. It is dependent on traction force, speed and control functions. The speed, distance and control functions are assumed bounded. Using the maximum principle and Lagrangian multipliers the system of equations constituting the necessary optimality conditions is formulated. Based on the analysis of the train movement the optimal trajectories in terms of train speed and associated optimal control functions are calculated. A new simplified method is used to calculate the set of the switching times implementing the optimal control function. Numerical examples are provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, A., Howlett, P., Pudney, P., Vu, X., Zhou, P.: The key principles of optimal train control - Part 1: formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points. Transp. Res. Part B 94, 482–508 (2016)

    Article  Google Scholar 

  2. Albrecht, A., Howlett, P., Pudney, P., Vu, X., Zhou, P.: The key principles of optimal train control - Part 2: existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques. Transp. Res. Part B 94, 509–538 (2016)

    Article  Google Scholar 

  3. Albrecht, A.R., Howlett, P.G., Pudney, P.J., Vu, X.: Energy-efficient train control: From local convexity to global optimization and uniqueness. Automatica 49, 3072–3078 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asnis, I.A., Dmitruk, A.V., Osmolovskii, N.P.: Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle. USSR Comput. Math. Math. Phys. 25(6), 37–44 (1985)

    Article  MATH  Google Scholar 

  5. Bigharaz, M.H., Afshar, A., Suratgar, A., Safaei, F.: Simultaneous optimization of energy consumption and train performances in electric railway systems. In: Preprints of the 19th World Congress of the International Federation of Automatic Control, pp. 6270–6275 (2014)

    Google Scholar 

  6. Burak-Romanowski, R., Woźniak, K.: Energetic aspect of the railway tracks modernization. Tech. Trans. Electr. Eng. 108(13), 13–29 (2011). (in Polish)

    Google Scholar 

  7. Gkortzas, P.: Study on optimal train movement for minimum energy consumption. MSc thesis, Mälardalen University, Sweden (2013). http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-21234

  8. Górecki, H., Fuksa, S., Korytowski, A., Mitkowski, W.: Optimal Control in Linear Systems with the Quadratic Performance Index. Polish Scientific Publisher, Warsaw (1983). (in Polish)

    Google Scholar 

  9. Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Howlett, P.: The optimal control of a train. Anna. Oper. Res. 98, 65–87 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Howlett, P.G., Pudney, P.J., Vu, X.: Local energy minimization in optimal train control. Automatica 45, 2692–2698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miyatake, M., Ko, H.: Optimization of train speed profile for minimum energy consumption. IEEJ Trans. Electr. Electron. Eng. 5, 263–269 (2010)

    Article  Google Scholar 

  13. Montroe, T., Pellegrinii, P., Nobili, P.: Energy consumption minimization problemin a railway network. Transp. Res. Procedia 22, 85–94 (2017)

    Article  Google Scholar 

  14. Myśliński, A., Nahorski, Z., Szulc, K., Radziszewska, W.: Simulation and optimization of the train movement. Research Report, Systems Research Institute, Warsaw, Poland (2017). (in Polish)

    Google Scholar 

  15. Novak, H., Vašak, M., Lešiči, V.: Hierarchical energy management of multi-train railway transport system with energy storages. In: IEEE International Conference on Intelligent Rail Transportation (ICIRT), pp. 130–138 (2016)

    Google Scholar 

  16. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  17. Rochard, B.P., Schmid, F.: A review of methods to measure and calculate train resistances. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 214(4), 185–199 (2000)

    Article  Google Scholar 

  18. Scheepmaker, G.M., Goverde, R.M.P., Kroon, L.G.: Review of energy-efficient train control and time tabling. Eur. J. Oper. Res. 257, 355–376 (2017)

    Article  Google Scholar 

  19. Vittek, J., Butko, P., Ftorek, B., Makys, P., Gorel, L.: Energy near optimal control strategies for industrial and traction drives with a.c. motors. Math. Probl. Eng. 2017 (2017). https://doi.org/10.1155/2017/1857186, Article ID 1857186, 22 pages

  20. Wang, Y., Ning, B., Cao, F., De Schutter, B., van den Boom, T.J.J.: A survey on optimal trajectory planning for train operations. In: Proceedings of the 2011 IEEE International Conference on Intelligent Rail Transportation (ICIRT 2011), Beijing, China, pp. 589–594 (2011)

    Google Scholar 

  21. Wnuk, M.: The calculation of the optimal velocity of the train under velocity constraints. Technika Transportu Szynowego 4, 54–59 (2012). (in Polish)

    Google Scholar 

  22. Ye, H., Liu, R.: A multiphase optimal control method for multi-train control and scheduling on railway lines. Transp. Res. Part B 93, 377–393 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrzej Myśliński or Weronika Radziszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myśliński, A., Nahorski, Z., Szulc, K., Radziszewska, W. (2018). Energy Consumption Optimal Control of the Train Movement. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics