Skip to main content

Synthesis of Nanoparticles by Microbes

  • Chapter
  • First Online:
Book cover Nanobotany
  • 494 Accesses

Abstract

Microorganisms are related to nanoworld. Nanoworld or nanotechnology describes the characteristics of particles with size ranging from 1–100 nm. Nanotechnology is the field of interest now for the scientist and they are applying it in each and every field of life like medicine, drug delivery, electronic, construction etc. They believe to be the future of the globe. There are a number of chemical and physical methods of nanoparticles synthesis but they are not considered to be cost effective on large scale. Moreover they add to the pollution of environment, thus making their use hazardous. But the use of biological method for the purpose is a better option. One of such method is use of microbe. This chapter includes the detail of some microbes, bacteria as well as fungi which are under research to develop nanoparticles of different metals and metal derivatives. This chapter also covers the main mechanism of the microbes involved in the biogenic synthesis of nanoparticles without causing any harm to the environment or system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou El-Nour MM, Eftaiha A, Al-Warthan A, Amma RAA (2010) Synthesis and application of silver nanoparticles. Arb J Chem 3(3):135–140

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI et al (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B 28(02):313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824–828

    Article  CAS  Google Scholar 

  • Ahmad R, Minaeian S, Shahverdi HR et al (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009

    Google Scholar 

  • Arayanan PVB, Thangavelu D, Muthukumarasamy VK, Munusamy C, Gurunathan B (2013) Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus. Bull Mater Sci 36(7):1201–1205

    Article  CAS  Google Scholar 

  • Azam AZ, Davood F, Ali RM, Muhammad N et al (2009) Synthesis and characterization of gold nanoparticles by tryptophane. Am J App Sci 82(4):691–695

    Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mat Lett 63(9–10):764–766

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacte rsphaeroides. Biotechnol Lett 28(14):1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mat Chem 14(22):3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mat Chem 15(26):2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Res Tech 27(5):389–401

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll Surf B 47(2):160–164

    Article  CAS  Google Scholar 

  • Borse V, Kaler A, Banerjee UC (2015) Microbial synthesis of platinum nanoparticles and evaluation of their anticancer activity. Int J Emerg Trends Elec Electron 11(2):65–73

    Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications. Adv Drug Del Rev 60(3):299–327

    Article  CAS  Google Scholar 

  • Castro L, Blazquez ML, Munoz JA et al (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:1–18

    Article  Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thernoaceticum. Appl Env Mic 59:7–14

    CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  PubMed  Google Scholar 

  • Dean JA (1979) Lange’s handbook of chemistry, 12th edn. McGraw-Hill Inc., New York, pp 6-2-6-19

    Google Scholar 

  • Deepak V, Kalishwaralal K, Ram S K P, Gurunathan S (2011) M. Rai and N. Duran (eds) Metal nanoparticles in microbiology, Springer, Berlin/Heidelberg 2011, doi:https://doi.org/10.1007/978-3-642-18312-6_2

    Chapter  Google Scholar 

  • Duran N, Priscyla D, Marcato PD, Alves O, De Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotech 3:1–7

    Article  Google Scholar 

  • Fan TX, Chow SK, Zhang D (2009) Biomorphic mineralization: from biology to materials. Progress Mat Sci 54(5):542–659

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R et al (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotech Biol Med 6(1):103–109

    Article  CAS  Google Scholar 

  • Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Coll Surf B 74(1):191–195

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140

    Article  CAS  Google Scholar 

  • Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic, San Diego

    Google Scholar 

  • Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR (1997) Cadmium-specific formation of metal sulfide “Q-particle” by Klebsiella pneumoniae. Microbiology 143:2521–2530

    Article  CAS  PubMed  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67(3–4):1003–1006

    Article  CAS  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Hindwai Pub Corp Int Sch Res Not 18:1–19

    Article  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Coll Surf B 75(1):330–334

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009a) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009b) Synthesis of TiO2 nanoparticles using microorganisms. Coll Surf B 71(2):226–229

    Article  CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Mohd B, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Coll Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK (2010) Biosynthesis of silver and gold nanoparticles using Brevi bacteriumcasei. Coll Surf B 77:257–262

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotech 128(3):648–653

    Article  CAS  Google Scholar 

  • Kumar BL, Gopal DVRS (2015) Effective role of indigenous microorganisms for sustainable environment. Biotech 5:867–876

    Google Scholar 

  • Kumar AS, Abyaneh MK, Sulabha SWG, Ahmad A, Khan MI (2007) Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Ravel B, Fleet BE et al (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Env Sci Tech 40(20):6304–6309

    Article  CAS  Google Scholar 

  • Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. App Env Micro 64(11):4607–4609

    CAS  Google Scholar 

  • Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mat 22(1):155–160

    Article  CAS  Google Scholar 

  • Magdi HM, Mourad MHE, AbdelAziz MM (2014) Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt J Exp Biol 10(1):1–12

    Google Scholar 

  • Mittal AK, Kaler A, Mulay AV, Bannergee UC (2013) Synthesis of gold nanoparticles using whole cells of Geotrichum candidum. J Nanopart 1(1):1–7

    Article  Google Scholar 

  • Mokhari N, Daneshpajouh S, Seedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small nanoparticles by culture supernatant of Klebsiella pneumoniae: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001a) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew and teChemie Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan S (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Elvaraj SS, Murty VR (2010) Microbial production of silver nanoparticle. Digest J Nanomat Biostr 5(1):135–140

    Google Scholar 

  • Panáček A, Kvítek L, Prucek R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phy Chem B 110(33):16248–16253

    Article  CAS  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotech 5:69–78

    Article  CAS  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G et al (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkumar K et al (2013) Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Nanosci Nanotechnol 3(1):21–25

    Google Scholar 

  • Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enz Mic Tech 46:501–505

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, NurYasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6:61–70

    CAS  Google Scholar 

  • Senapati S, Mandal D, Ahmad A (2005a) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind J Phys A 78(1):101–105

    Google Scholar 

  • Senapati S, Ahmad A, Khan MI et al (2005b) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles particles. Small 1(5):517–520

    Article  CAS  PubMed  Google Scholar 

  • Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact. Int J Pharm Sci Inven 3(8):28–38

    Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, Ha DV, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749

    Article  CAS  PubMed  Google Scholar 

  • Stark AL (2010) Beneficial microorganisms: countering Microbephobia. CBE Life Sci Edu 9:387–389

    Article  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Sweeney RY, Mao C, Gao X (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem 13:1069–1075

    Article  CAS  Google Scholar 

  • Thomas R, Viswan A, Mathew J, Radhakrishnan EK (2012) Evaluation of antibacterial activity of silver nanoparticles synthesized by a novel strain of marine Pseudomonas sp. Nano Biomed Eng 4:139–143

    CAS  Google Scholar 

  • Velusamy P, Kumar GV, Jeyanthi V et al (2016) Inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP et al (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mat Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  PubMed  Google Scholar 

  • Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacterial 84:647–658

    CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization. Nanoscale Res Lett 3(11):397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aftab, A. (2018). Synthesis of Nanoparticles by Microbes. In: Javad, S., Butt, A. (eds) Nanobotany. Springer, Cham. https://doi.org/10.1007/978-3-319-77119-9_9

Download citation

Publish with us

Policies and ethics