Skip to main content

Nanobotany and Pharmaceuticals

  • Chapter
  • First Online:
Nanobotany

Abstract

Bionanotechnology is the combination of biotechnology and nanotechnology and it emerged as an ecofriendly technology for the nanomaterials’ biological synthesis. A physicist Professor Richard Feynman in his remarkable speech said “there’s plenty of room at the bottom” devised the idea of nanotechnology (1), yet the Professor Norio Taniguchi of Tokyo Science University introduced the term nanotechnology (2). Nanoparticles are regarded as groups of elements in the range of 1–100 nm. These nanoparticles possess different kind of physiochemical properties; depending upon the material and method from which they are synthesized. Nanoparticles synthesized from plants and their extracts can be safely used for pharmacological devices. This chapter covers some of the aspects in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) Plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  PubMed  Google Scholar 

  • Åkerman ME, Chan WCW, Laakkonen P (2002) Nanocrystal targeting in vivo. PNAS 99:12617–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ankana S, Prasad TNVKV, Elumalai EK, Savithramma N (2010) Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanometer Biostruct 5:369–372

    Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249

    Article  CAS  PubMed  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 1:1–9

    Google Scholar 

  • Baran ET, Ozer N, Hasirci V (2002) In vitro half-life of nanoencapsulated L-asparaginase. J Mat Sci Mat in Med 13:1113–1121

    Google Scholar 

  • Bazile D, Prud’Homme C, Bassoullet MT (1995) Stealth PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Del Rev 60:1289–1306

    Article  CAS  Google Scholar 

  • Borm PJ (2002) Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol 14:311–324

    Article  CAS  PubMed  Google Scholar 

  • Borm PJ, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol 4:521–531

    Article  CAS  PubMed  Google Scholar 

  • Bowman MC, Ballard TE, Ackerson CJ, Feldheim DJ, Margolis DM, Melander C (2008) Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130:6896–6897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascone MG, Lazzeri L, Carmignani C (2002) Gelatin nanoparticles produced by a simple W/O emulsion as drug delivery system for methotrexate. J Mat Sci Mat in Med 13:523–526

    Article  CAS  Google Scholar 

  • Chang JS, Chang KLB, Hwang DF (2007) In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068

    Article  CAS  PubMed  Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123:288–292

    Article  CAS  PubMed  Google Scholar 

  • Choi AO, Cho SJ, Desbarats J (2007) Quantum dot-induced cell death involves fats up regulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotech 12:1

    Article  CAS  Google Scholar 

  • Chorianopoulos NG, Tsoukleris DS, Panagou EZ, Falaras P, Nychas GJE (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28:164–170

    Article  CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • CLSI, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012

    Google Scholar 

  • Cornor EE, Mwamuka J, Gole A (2005) Gold nanoparticles are taken by human cells but do not cause acute toxicity. Small 1:325–327

    Article  CAS  Google Scholar 

  • Costigan S (2006) The toxicology of nanoparticles used in health care products. Available at the website of the medicines and healthcare products regulatory agency, Department of Health, UK. Accessed 20 November 2006. http://www.mhra.gov.uk/home/idcplg?IdcService=SS_GET_PAGE&nodeId=996

  • De Jong WH, Geertsma RE, Roszek B (2005) Nanotechnology in medical applications. Possible risks for human health. Report 265001002/2005, National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands

    Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2012) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V (2003) Current hypotheses on the mechanism of toxicity of ultrafine particles. Ann 1st Super Sanita 39:405–410

    Google Scholar 

  • Donaldson K, Stone V, Clouter A (2001) Ultrafine Particles. Occup Env Med 58:211–216

    Article  CAS  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreher KL (2004) Toxicological highlight. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5

    Article  PubMed  Google Scholar 

  • Duffy EF, Touati FA, Kehoe SC, McLoughlin OA, Gill LW, Gernjak W, Oller I, Maldonado MI, Malato S, Cassidy J, Reed RH, McGuigan KG (2002) A novel TiO2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Sol Energy 77:649–655

    Article  CAS  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Disc 2:347–360

    Article  CAS  Google Scholar 

  • Fang C, Shi B, Pei YY (2006) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunity and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  PubMed  Google Scholar 

  • Feynman R (1959) There’s plenty of room at the bottom. A talk given at the annual meeting of the American Physical Society at the California Institute of Technology, December 29, 1959. A full transcript of the lecture can be found at www.zyvex.com/nanotech/feynman.html

  • Fishbein I, Chorny M, Banai S (2001) Formulation and delivery mode affect disposition and activity of tyrphostin-loaded nanoparticles in the rat carotid model. Arterioscler Thromb Vasc Biol 21(9):1434

    Article  CAS  PubMed  Google Scholar 

  • Flores ME, Negrete J, Torres VG (2003) Structure and properties of Zn-Al-Cu alloy reinforced with alumina particles. Mater Des 24:281–286

    Google Scholar 

  • Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54(6):1019–1024

    Article  CAS  PubMed  Google Scholar 

  • Giancivincenzo PD, Marradi M, Martinez-Avila OM, Bedoya LM, Alcami J, Penades S (2010) Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett 20:2718–2721

    Article  CAS  Google Scholar 

  • Granum B, Lovik M (2002) The effect of nanoparticles on immune allergic responses. Toxicol Sci 65:7–17

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    Article  CAS  PubMed  Google Scholar 

  • Hardman R (2006) A toxicological review of quantum dots: toxicity depends on physiochemical and environmental factors. Environ Healh Perspect 114:165–172

    Article  Google Scholar 

  • Higby GJ (1990) Gold in medicine: a review of its use in the west before 1900. Gold Bull 15:130–140

    Article  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA (2003) Nanoshell-mediated near infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci USA 100:13549–13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood JR, Wilkinson JM, Cavanagh HMA (2003) Evaluation of common antibacterial screening methods utilized in essential oils research. J Essent Oil Res 15(6):428–433

    Article  CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072

    Article  CAS  PubMed  Google Scholar 

  • Huang L (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Banumathi E, Pandian SBRK, Deepak V, Muniyandi J, Eom SH (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerf 73:51–57

    Article  CAS  Google Scholar 

  • Kawano T, Yamagata M, Takahishi H (2006) Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J Cont Rel 111:382–389

    Article  CAS  Google Scholar 

  • Kipp JE (2004) The role of solid nanoparticle technology in the parental delivery of poorly-water-soluble-drugs. Int J Pharm 284:109–122

    Article  CAS  PubMed  Google Scholar 

  • Koper O, Klabunde J, Marchin G, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins. Curr Microbiol 44:49–55

    Article  CAS  PubMed  Google Scholar 

  • Kreyling WG, Semmler M, Moller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17:140–152

    Article  CAS  PubMed  Google Scholar 

  • Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea Aust Rheol J 17:35–40

    Google Scholar 

  • Lai MK, Chang CY, Lian YW (2006) Application of gold nanoparticles to microencapsulation of thioridazine. J Cont Rel 111:352–361

    Article  CAS  Google Scholar 

  • Lara HH, Ayala-Nunez NV, Turrent LI, Padilla CR (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotech 8:1–9

    Article  CAS  Google Scholar 

  • Lavan DA, McGuire T, Langer R (2003) Small scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    Article  CAS  PubMed  Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal oxide surfaces. Coll Surf B 36:81–90

    Article  CAS  Google Scholar 

  • Lin W, Huang YW, Zhou XD (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharma 217:252–259

    Article  CAS  Google Scholar 

  • Liu Y, Li J, Qiu XF, Burda C (2007) Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A Chem 190:94–100

    Article  CAS  Google Scholar 

  • Loo C, Lin A, Hirsch L (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

    PubMed  CAS  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: synthesis of nanoparticles using plants. Acta Natur 6(1):35–44

    CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on Sclerotium forming Phytopathogenic fungi. Plant Pathol J 25(4):376–380

    Article  CAS  Google Scholar 

  • Moghimi SM, Hunter JC, Murray JC (2001) Long circulating and target specific nanoparticles: theory and practice. Pharmacol Rev 53:283–318

    PubMed  CAS  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  CAS  PubMed  Google Scholar 

  • Niidome T, Yamagata M, Okamoto Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Cont Rel 114:343–347

    Article  CAS  Google Scholar 

  • Nobs L, Buccheger F, Gurny R (2004) Poly (lactic acid) nanoparticles labeled with biologically active Neutravidin™ for active targeting. Eur J Pharm Biopharm 58:483–490

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:1–8

    Article  CAS  Google Scholar 

  • Obordoster G (1996) Significance of particle parameters in the evaluation of exposure dose response relationships of inhaled particles. Inhal Toxicol 8:73–89

    Google Scholar 

  • Peracchia MT, Fattal E, Desmaele D (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60:121–128

    Article  CAS  PubMed  Google Scholar 

  • Pinto DB, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with Mercapto ethane sulfonate. Bioconjug Chem 20:1497–1502

    Article  CAS  Google Scholar 

  • Rai RV, Bai JA (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez V (ed) Science against microbial pathogens, communicating current research and technological advances. Badajoz Formatex, pp 197–209

    Google Scholar 

  • RaviKumar MN, Gameti M, Mohapatra SS (2004) Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J Nanosci Nanotech 4:876–881

    Article  CAS  Google Scholar 

  • Ravishankar V, Rai A, Jamuna B (2011) Nanoparticles and their potential application as antimicrobials. Science against microbial pathogens: communicating current research and technological advances FORMATEX 1:197–209

    Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  • Richards R, Li W, Decker S, Davidson C, Koper O, Zaikovski V, Volodin A, Rieker T, Klabunde K (2000) Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J Am Chem Soc 122:4921–4925

    Article  CAS  Google Scholar 

  • Rupareli JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–771

    Article  CAS  Google Scholar 

  • Sadiq M, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomed Nanotech Biol Med 5:282–286

    Article  CAS  Google Scholar 

  • Saez A, Guzman M, Molpeceres J (2000) Freeze drying of poly-caprolactone and poly (D-L- lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmokinetics of loaded drugs. Eur J Pharm Bipharm 50:379–387

    Article  CAS  Google Scholar 

  • Sahayaraj K, Rajesh S (2011) Bionanoparticles: synthesis and antimicrobial applications, science against microbial pathogens: communicating current research and technological advances. In: Me’ndez-Vilas A (ed) FORMATEX, pp 228–244

    Google Scholar 

  • Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nanoparticles with highly efficient anti-microbial property. Polyhedron 26:4419–4426

    Article  CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  CAS  PubMed  Google Scholar 

  • Scenihr (2006) EU Scientific Comittee on emerging and newly identified health risks. Modified opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. SCENIHR/002/05

    Google Scholar 

  • Seki J, Sonoke S, Saheki A (2004) A nanometer lipid emulsion, lipid nano-sphere(LNS) as a parental drug carrier for passive drug targeting. Int J Pharm 273:75–83

    Article  CAS  PubMed  Google Scholar 

  • Senior J, Gregoriadis G (1982) Is half-life of circulating small unilamellar liposomes determined by changes in their permeability? FEBS Lett 145:109–114

    Article  CAS  PubMed  Google Scholar 

  • Senior J, Crawley JCW, Fisher D (1985) Influence of surface hydrophobicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1062:77–82

    Article  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Shaw IC (1999) Gold-based therapeutic agents. Chem Rev 99:2589–2600

    Article  CAS  Google Scholar 

  • Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-1b-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnol 7:1–8

    Article  CAS  Google Scholar 

  • Shim J, Kang SH, Park WS (2004) Transdermal delivery of minoxidil with block copolymer nanoparticles. J Cont Rel 97:477–484

    Article  CAS  Google Scholar 

  • Simpson CA, Huffman BJ, Gerdon AE, Cliffel DE (2010) Unexpected toxicity of monolayer protected gold clusters eliminated by PEG-thiol place exchange reactions. Chem Res Toxicol 23:1608–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soumya RS, Hela PG (2013) Nano silver based targeted drug delivery for treatment of cancer. Pharm Lett 5(4):189–197

    CAS  Google Scholar 

  • Stern JM, Stanfield J, Lotan Y (2007) Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol 21:939–943

    Article  PubMed  Google Scholar 

  • Stoimenov PK (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sun RW, Rong C, Chung NPY, Ho CM, Lin CLS, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit a cryoprotective activities toward HIV-1 infected cells. Chem Commun:5059–5061

    Google Scholar 

  • Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Env Sci Tech 32:726–728

    Article  CAS  Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications-reflections on the field. Adv Dru Del Rev 57:2106–2129

    Article  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of ‘nano-technology’ proc Intl Conf prod Eng Tokyo. Part II, Japan Society of Precision Engineering 5–10:10

    Google Scholar 

  • The Royal Society and The Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. London, UK. Accessed 10 Aug 2004. http://www.nanotec.org.uk/finalReport.htm

  • Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (2004) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28:934–938

    Article  Google Scholar 

  • Wist J, Sanabria J, Dierolf C, Torres W, Pulgarin C (2004) Evaluation of photocatalytic disinfection of crude water for drinking water production. J Photochem Photobiol A Chem 147:241–246

    Article  Google Scholar 

  • Xia T, Kovochich M, Brant J (2006) Comparison of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  PubMed  Google Scholar 

  • Xu JF, Ji W, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin XQ (2009) Preparation and characterization of CuO nanocrystals. J Solid State Chem 147:516–519

    Article  CAS  Google Scholar 

  • Yamakoshi Y, Umezawa N, Ryu A (2003) Active oxygen species generated from photo-excited fullerene (C-60) as potential medicines: O2−versus 1 O2. J Am Chem Soc 125:12803–12809

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun X (2005) Dumbbell like bio-functional Au-Fe 3O4 nanoparticles. Nano Lett 5(2):379–382

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu Y, Xiang X (2004) Camptothecin derivative loaded poly(caprolactone co lactide)-b-PEG-b-poly-(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Cont Rel 95:135–148

    Article  CAS  Google Scholar 

  • Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (znonanofluids). J Nanopart Res 9:479–489

    Article  CAS  Google Scholar 

  • Zharov VP (2006) Photothermalnanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–627

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, Z., Iqbal, S. (2018). Nanobotany and Pharmaceuticals. In: Javad, S., Butt, A. (eds) Nanobotany. Springer, Cham. https://doi.org/10.1007/978-3-319-77119-9_7

Download citation

Publish with us

Policies and ethics