Skip to main content

Nano Drugs

  • Chapter
  • First Online:
Nanobotany

Abstract

Nanoparticles, nanostructures of variety of shapes, sizes and morphology are prominently being use for medical and disease diagnostics, element and impurity detection and monitoring of cells and tissues and in living beings. Recently, drug-delivery system based on nano-particle coating of drugs getting much attention and interest for the cure of cancer and heart diseases. The purpose is to increase the human health and safety from diseases by using novel nano-structures and devices. Number of drug-delivery systems like Oral, intranasal, parental and nano-networking etc. are discussed in detail. Detail view of synthesis techniques for different sizes, shapes and morphology of nano-architectures is described. These varieties of nano-structures and devices are specifically designed for delivering the drug in better and easy way to malfunctioning area in the human and living beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baranello MP, Bauer L, Benoit DS (2014) Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Biomacromolecules 15(7):2629–2641

    Article  CAS  PubMed  Google Scholar 

  • Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, Perán M, Melguizo C, Aranega A (2011) Nanomedicine: Application areas and development prospects. Int J Mol Sci 12(5):3303–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boysen E of Hawk’s Perch Technical Writing, LLC and UnderstandingNano.com. Copyright ©20072016 Hawk’s Perch Technical Writing, LLC-All Rights Reserved

    Google Scholar 

  • Bradbury J (2003) Nanoshell destruction of inoperable tumours. Lancet Oncol 4:711

    Article  PubMed  Google Scholar 

  • Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S, Zeiher AM (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI) mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108:2212–2218

    Article  CAS  PubMed  Google Scholar 

  • Brunetti FG, Herrero MA, Muñoz JM, Giordani S, Díaz-Ortiz A, Filippone S, Ruaro G, Meneghetti M, Prato M, Vázquez E (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581

    Article  CAS  PubMed  Google Scholar 

  • Carlmark A, Hawker C, Hult A, Malkoch M (2009) New methodologies in the construction of dendritic materials. Chem Soc Rev 38:352–362

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Kwon GS (2014) Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery. J Drug Target 22:669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H, Lai TC, Kwon GS (2013) Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: Evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Contr Release 166(1):1–9

    Article  CAS  Google Scholar 

  • Cho H, Lai TC, Tomoda K, Kwon GS (2014) Polymeric micelles for multi-drug delivery in cancer. AAPS Pharm Sci Tech 16:10–20

    Article  CAS  Google Scholar 

  • Darbre T, Reymond J (2006) Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc Chem Res 39(12):925–934

    Article  CAS  PubMed  Google Scholar 

  • Deb KD, Griffith M, Muinck ED, Rafat M (2012) Nanotechnology in stem cells research: advances and applications. Front Biosci (Landmark Ed) 17:1747–1760

    Article  CAS  Google Scholar 

  • Dikmen G, Genç L, Güney G (2011) Advantage and disadvantage in drug delivery system. J Mater Sci Eng 5(4):468–472

    Google Scholar 

  • Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Delivery Rev 57:2177–2202

    Article  CAS  Google Scholar 

  • Edina CW, Andrew ZW (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 6(1):9–26

    Google Scholar 

  • Emeje MO, Obidike IC, Akpabio EI, Ofoefule SI (2012) Nanotechnology in drug delivery. In: Sezer AD (ed) InTech, Rijeka, Croatia, pp 70–106

    Google Scholar 

  • Eskiler G G, Gökhan D, Lütfi G (2013) Nano-based drug delivery system, Intech. (2013):90–146. http://iapc-obp.com/assets/files/106072_08_NBDD_03.pdf

  • Estanqueiro M, Amaral MH, Conceiçao J, Lobo JMS (2015) Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B 126:631–648

    Article  CAS  Google Scholar 

  • Fukushima S, Varela-Carver A, Coppen S R, Yamahara K, Felkin L E, Lee J, Barton P J, Terracciano C M, Yacoub M H, Suzuki K (2007) Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation 115(17):2254–2261

    Article  PubMed  Google Scholar 

  • Gaucher G, Satturwar P, Jones MC, Furtos A, Leroux JC (2010) Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 76:147–158

    Article  CAS  PubMed  Google Scholar 

  • Güney G, Genç L, Dikmen G (2011) J Mater Sci Eng 5(5):577–582

    Google Scholar 

  • Gupta A, Arora A, Menakshi A, Sehgal A, Sehgal R (2012) nanotechnology and its applications in drug delivery: a review. Int J Med. Mol Med 3(1):1–9

    Article  CAS  Google Scholar 

  • Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semın Ori 26:57–64

    Article  CAS  Google Scholar 

  • Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, Kabanov AV (2012) Long-circulating PEG-PE micelles co-loaded with paclitaxel and elacridar (GG918) overcome multidrug resistance. Mol Pharm 9:2302–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero MA, Toma FM, Al-Jamal KT, Kostarelos K, Bianco A, Ros TD, Bano F, Casalis L, Scoles G, Prato M (2009) Synthesis and characterization of a carbon nanotube−dendron series for efficient siRNA delivery. J Am Chem Soc 131(28):9843–9848

    Article  CAS  PubMed  Google Scholar 

  • Hornyak GL, Tibbals HF, Dutta J, Moore JJ (2008) Introduction of nano science and nanotechnology. Chapter no: 9, Carob-based nanomaterials, December 22. CRC Press, Boca Raton

    Book  Google Scholar 

  • http://www.understandingnano.com/cancer-therapy-platinum-gold-nanoparticles.html

  • http://www.understandingnano.com/nanotechnology-drug-delivery.html

  • Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H (2010) Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 20(3):228–243

    Article  CAS  PubMed  Google Scholar 

  • Katayose S, Kataoka K (1998) Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly (ethylene glycol)—poly (L-lysine) block copolymer. J Pharm Sci 87:160–163

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307

    Article  CAS  Google Scholar 

  • Kozlov M, Melik-Nubarov N, Batrakova E, Kabanov A (2011) Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33:3305–3313

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Ng VW, Gao S, Tan MH, Yang YY (2014) Phenformin-loaded polymeric micelles for targeting both cancer cells and cancer stem cells in vitro and in vivo. Biomaterials 35(33):9177–9186

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kulkarni A, Nagesha DK, Sridhar S (2012) In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics 2(7):714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutty RV, Feng SS (2013) Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials 34(38):10160–10171

    Article  CAS  PubMed  Google Scholar 

  • Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H (2012) Preparation, Characterization and Applications of Liposomes: State of the Art. J Colloids Sci Biotechnol 1:147–168

    Article  CAS  Google Scholar 

  • Lee H, Soo PL, Liu J, Butler M, Allen C (2007) Polymeric micelles for formulation of anti-cancer drugs. In: Amiji MM (ed) CRC Press, New York, pp 318–355

    Google Scholar 

  • Lencioni R, Bartolozzi C (1996) Ethanol injection for the treatment of hepatic tumours. Eur Radiol 6(5):682–696

    PubMed  Google Scholar 

  • Lopes S C A, Giuberti C S, Rocha T G R, Ferreira D S, Leite E A, Oliveira M C (2013). Liposomes as carrier of anticancer drugs, L. Rangel (Ed.), Intech.

    Google Scholar 

  • Mader K, Mehnert W (2004). Solid lipid nanoparticles – concepts, procedures and physicochemical aspects, C. Nastruzzi (Ed.), CRC Press, Boca Rotan: 1–22.

    Google Scholar 

  • Makino K, Shibata A (2006). Surface properties of liposomes depending on their composition. In: Liu AL (ed) Elsevier, New York, pp 49–53

    Google Scholar 

  • Malik A, Chaudhary S, Garg G, Tomar A (2012) Dendrimers: a tool for drug delivery. Adv Biol Res 6(4):165–169

    CAS  Google Scholar 

  • Molina EJ, Palma J, Gupta D, Torres D, Gaughan JP, Houser S, Macha S, Thorac J (2008) Improvement in hemodynamic performance, exercise capacity, inflammatory profile, and left ventricular reverse remodeling after intracoronary delivery of mesenchymal stem cells in an experimental model of pressure overload hypertrophy. Cardiovasc Surg 135:292–299

    Google Scholar 

  • Molina EJ, Palma J, Gupta D, Gaughan JP, Houser S, Macha M (2009) Right ventricular effects of intracoronary delivery of mesenchymal stem cells (MSC) in an animal model of pressure overload heart failure. Biomed Pharmacother 63:767–772

    Article  CAS  PubMed  Google Scholar 

  • Mussi SV, Torchilin VP (2013) Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Mater Chem B 1:5201–5209

    Article  CAS  PubMed  Google Scholar 

  • Na HS, Lim YK, Jeong YI, Lee HS, Lim YJ, Kang MS, Cho CS, Lee HC (2010) Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm 383(1–2):192–200

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Ryuichi E, Takeda M (1976) Surface properties of styrene – ethylene oxide block copolymers. J Polym Sci 14(7):1287–1295

    CAS  Google Scholar 

  • Nasibullah M, Hassan F, Ahmad N, Khan AR, Rahman M (2013) Dendrimers as novel polymeric material: a review on its synthesis, characterization and their applications. Adv Sci Focus 1(3):197–204

    Article  Google Scholar 

  • Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Article  CAS  Google Scholar 

  • Patil J, Gurav P, Kulkarni R, Jadhav S, Mandave S, Shete S, Chipade V (2013) Applications of solid lipid nanoparticle in novel drug delivery system. Brit. Biomed Bull 1(2):103–118

    CAS  Google Scholar 

  • Ramandeep Singh MK (2016) Kale and Atul Bodkhe, Liposomes: from concept to commercialization. Euorpian J Biomed Pharm sci 3(7):189–206

    Google Scholar 

  • Ramasamy T, Kim J, Choi HG, Yong CS, Kim JOJ (2014) Novel dual drug-loaded block monomer complex micelles for enhancing the efficacy of chemotherapy treatments. Nanotechnology 10(7):1304–1312

    CAS  Google Scholar 

  • Sajomsang W, Gonil P, Saesoo S, Ruktanonchai UR, Srinuanchai W, Puttipipatkhachorn S (2014) Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. Int J Pharm 477(1–2):261–272

    Article  CAS  PubMed  Google Scholar 

  • Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113:810–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarisozen C, Vural I, Levchenko T, Hincal AA, Torchilin VP (2012) Long-circulating PEG-PE micelles co-loaded with paclitaxel and elacridar (GG918) overcome multidrug resistance. Drug Deliv 19(8):363–370

    Article  CAS  PubMed  Google Scholar 

  • Satchi-Fainaro R, Duncan R, BarnesB C M (2006) Polymer therapeutics for cancer: current status and future challenges. In: Satchi-Fainaro R, Duncan R (eds) Springer, New York, pp 1–65

    Google Scholar 

  • Schwarz MA, Raith K, Neubert RHH (1998) Characterization of micelles by capillary electrophoresis. Electrophoresis 19:2145–2150

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Pei A, Sun A, Xu J, Song Y, Huang G, Sun X, Zhang S, Qin Q, Zhu H, Yang S, Yang X, Zou Y, Qian J, Ge J (2013) Comparison of magnetic intensities for mesenchymal stem cell targeting therapy on ischemic myocardial repair: high magnetic intensity improves cell retention but has no additional functional benefit. Biomaterials 34:9905–9916

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Shi K, Tan L, Qu Y, Shen G, Chu B, Zhang S, Su X, Li X, Wei Y, Qian Z (2014) The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials 35(15):4536–4547

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Sharma VK (2013) Dendrimers: A class of polymer in the nanotechnology for drug delivery. In: AK Mishra (ed), Scrivener Publishing, Beverly

    Chapter  Google Scholar 

  • Sosnik A, Raskin MM (2015) Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 33(6):1380–1392

    Article  CAS  PubMed  Google Scholar 

  • Sun CY, Ma YC, Cao ZY, Li DD, Fan F, Wang JX, Tao W, Yang XZ (2014) Effect of Hydrophobicity of Core on the Anticancer Efficiency of Micelles as Drug Delivery Carriers. ACS Appl Mater Interfaces 6(24):22709–22718

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Saurabh KB (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy S, Das MK (2013) Dendrimers and their applications as novel drug delivery carriers. J Appl Pharmaceut Sci 3(9):142–149

    Google Scholar 

  • Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70(2):95–111

    Article  CAS  PubMed  Google Scholar 

  • Venkataraman S, Hedrick SL, Ong ZY, Yang C, Pui Lai Rachel Ee, Hammond PT, Yang YY (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63(14-15):1228–1246

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G (2011) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32:8281–8290

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Whiteman KR, Torchilin VP (1998) Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous lewis lung carcinoma in mice. Pharm Res 15:1552–1556

    Article  CAS  PubMed  Google Scholar 

  • Welch PM, Welch CF (2009) Tecto-dendrimers: a study of covalently bound nanospheres. Macromolecules 42:7571–7578

    Article  CAS  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivary systems. Pharmacol Rep 64:1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Sun A, Zhu W, Huang Z, Hu X, Jia J, Zou Y, Ge J (2012) Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats. Tohoku J Exp Med 226:29–36

    Article  CAS  PubMed  Google Scholar 

  • Yhee J Y, Son S, Son S, Joo MK, Kwon IC (2013). The EPR effect in cancer therapy. In: Bae YH, Mrsny RJ, Park K (eds) Springer, New York, pp 621–632

    Chapter  Google Scholar 

  • Yokoyama M (2010) Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 7:145–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu B, Yang Z, Li H, Luo X, Luo H, Gao D, Jiang Q, Liu J, Jiang Z (2014a) Micelles of enzymatically synthesized PEG-poly(amine-co-ester) block copolymers as pH-responsive nanocarriers for docetaxel delivery. Colloids Surf B 115:349–358

    Article  CAS  Google Scholar 

  • Zhang X, Zeng X, Liang X, Yang Y, Li X, Chen H, Huang L, Mei L, Feng S S (2014b) The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 35(33):9144–9154

    Article  CAS  PubMed  Google Scholar 

  • Zharov V, Galitovsky V, Viegas M (2003) Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phys Lett 83(24):4897–4899

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabah, A., Hornyak, G.L. (2018). Nano Drugs. In: Javad, S., Butt, A. (eds) Nanobotany. Springer, Cham. https://doi.org/10.1007/978-3-319-77119-9_5

Download citation

Publish with us

Policies and ethics