Skip to main content

Future Prospects of Nanobotany

  • Chapter
  • First Online:
Book cover Nanobotany

Abstract

Nanoparticles synthesized from plant materials or plant products have a bright future ahead. This chapter covers a brief overview of the progress going on in nanotechnology, its future applications or expectations. There are different industries which hope to revolutionalize by the practical introduction of nanotechnology. Fields of science like medicine, health, robostics, food sciences, agriculture, all are supposed to be highly influenced by nanotechnology in a few upcoming years. A real research is needed to overcome all the flaws and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas KA, Saleh AM, Mohamed A, Mohdazhan N (2009) The recent advances in the nanotechnology and its applications in food processing: a review. J Food Ag Env 7(3–4):14–17

    CAS  Google Scholar 

  • Abhilash P, Singh N (2009) Pesticide use and application: an Indian scenario. J Haz Mat 165(1):1–12

    Article  CAS  Google Scholar 

  • Alfadul S, Elneshwy A (2010) Use of nanotechnology in food processing, packaging and safety–review. Afr J Food Agr Nut Develop 10(6)

    Google Scholar 

  • Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68(2):158–163

    Article  CAS  PubMed  Google Scholar 

  • Arafa MD, Defazio C, De Miguel Y, Porro A, Bartos P (2006) Nano-composite coatings for transportation infrastructures: demonstration projects. In: NICOM 2: 2nd international symposium on nanotechnology in construction, 2006. RILEM Publications SARL, pp 363–371

    Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

  • Balaguru P (2005) Nanotechnology and concrete: background, opportunities and challenges. In: Applications of nanotechnology in concrete design: proceedings of the international conference held at the University of Dundee, Scotland, UK. Thomas Telford Publishing, pp 113–122

    Chapter  Google Scholar 

  • Bigley C, Greenwood P (2003) Using silica to control bleed and segregation in self-compacting concrete. Concrete 37(2):43–45

    Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    Article  CAS  Google Scholar 

  • Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1(4):224–227

    Article  CAS  Google Scholar 

  • Campos EVR, De Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6(4):373–387

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contamin 25(3):241–258

    Article  CAS  Google Scholar 

  • Chellaram C, Murugaboopathi G, John A, Sivakumar R, Ganesan S, Krithika S, Priya G (2014) Significance of nanotechnology in food industry. APCBEE Procedia 8:109–113

    Article  CAS  Google Scholar 

  • Christian OP, Prem SB (2017) Nanofertilizers: new products for the industry. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b02150

  • Davis S (1997) Biomedical applications of nanotechnology—implications for drug targeting and gene therapy. Trends Biotech 15(6):217–224

    Article  CAS  Google Scholar 

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash P, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotech Adv 32(8):1550–1561

    Article  CAS  Google Scholar 

  • Derosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotech 5(2):91–91

    Article  CAS  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):1

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14(9):1–15

    Article  CAS  Google Scholar 

  • Dingman J, Rehs D (2008) Nanotechnology: its impact on food safety. J Env Health 70(6):47–50

    Google Scholar 

  • Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J (2003) Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J Drug Targ 11(8–10):495–507

    Article  CAS  Google Scholar 

  • Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation, Wiley, New York

    Google Scholar 

  • El-Shabouri M (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249(1):101–108

    Article  CAS  PubMed  Google Scholar 

  • Ewert K, Evans HM, Ahmad A, Slack NL, Lin AJ, Martin-Herranz A, Safinya CR (2005) Lipoplex structures and their distinct cellular pathways. Adv Genetics 53:119–155

    CAS  Google Scholar 

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341(6147):752–758

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech Adv 29(6):792–803

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, Mcnicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mat 13(4):400–408

    Article  CAS  Google Scholar 

  • Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Phil Trans R Soc B 369(1639):20120273

    Article  PubMed Central  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agr Food Chem 60(39):9781–9792

    Article  CAS  Google Scholar 

  • González JOW, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control–characterization and biological properties. Chemosphere 100:130–138

    Article  CAS  Google Scholar 

  • Guccione S, Li KC, Bednarski MD (2004) Vascular-targeted nanoparticles for molecular imaging and therapy. Meth Enz 386:219–236

    Article  CAS  Google Scholar 

  • Hart SL (2005) Lipid carriers for gene therapy. Curr Drug Del 2(4):423–428

    Article  CAS  Google Scholar 

  • Hu L, Tang X, Cui F (2004) Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol 56(12):1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aqua Toxicol 105(3):328–336

    Article  CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Env Int 63:224–235

    Article  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Env Sci Tech 43(16):1823–1867

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341(6147):759–765

    Article  CAS  PubMed  Google Scholar 

  • Konwarh R, Gogoi B, Philip R, Laskar M, Karak N (2011) Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Coll Surf B Biointerf 84(2):338–345

    Article  CAS  Google Scholar 

  • Köping-Höggård M, Sánchez A, Alonso MJ (2005) Nanoparticles as carriers for nasal vaccine delivery. Exp Rev Vacc 4(2):185–196

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Tech Biotech 84(2):151–157

    Article  CAS  Google Scholar 

  • Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona Squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochimica Acta Part A Mol Biomol Spec 90:173–176

    Article  CAS  Google Scholar 

  • Lavan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 1(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Li G (2004) Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement Concrete Res 34(6):1043–1049

    Article  CAS  Google Scholar 

  • Lovely D, Phillips EJ, Lonergan DJ (1991) Enzymatic versus nonenzymatic mechanisms for Fe (III) reduction in aquatic sediments. Env Sci Tech 25(6)

    Google Scholar 

  • Lutsiak MC, Robinson DR, Coester C, Kwon GS, Samuel J (2002) Analysis of poly (D, L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 19(10):1480–1487

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32

    Google Scholar 

  • Mcclung CR (2014) Making hunger yield. Sci 344(6185):699–700

    Article  CAS  Google Scholar 

  • Morla S, Ramachandra RCSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Bio Phys Sci B 1:328–334

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Del Rev 55(3):329–347

    Article  CAS  Google Scholar 

  • Rana AK, Rana SB, Kumari A, Kiran V (2009) Significance of nanotechnology in construction engineering. Int J Recent Trends Eng 1(4):46–48

    Google Scholar 

  • Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mat Sci Eng 2015

    Google Scholar 

  • Requicha AA (2003) Nanorobots, NEMS, and nanoassembly. Proceedings IEEE 91(11):1922–1933

    Article  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. Insecticides design using advanced technologies. Springer, Berlin

    Google Scholar 

  • Sastry K, Rashmi H, Rao N (2010) Nanotechnology patents as R&D indicators for disease management strategies in agriculture. J Intellectual Property Rights 15:197–205

    Google Scholar 

  • Schurig D, Mock J, Justice B, Cummer SA, Pendry JB, Starr A, Smith D (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980

    Article  CAS  PubMed  Google Scholar 

  • Schurig D, Pendry J, Smith D (2007) Transformation-designed optical elements. Opt Express 15(22):14772–14782

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2010) Food nanotechnology–an overview. Nanotech Sci Appl 3(1):1–15

    CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of au, ag, and bimetallic au core–ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Coll Interf Sci 275(2):496–502

    Article  CAS  Google Scholar 

  • Shellhart WC, Oesterle LJ (1999) Uprighting molars without extrusion. The J Am Dental Assoc 130(3):381–385

    Article  CAS  Google Scholar 

  • Shi H, Tsai WB, Garrison MD, Ferrari S, Ratner BD (1999) Template-imprinted nanostructured surfaces for protein recognition. Nature 398(6728):593–597

    Article  CAS  PubMed  Google Scholar 

  • Stephenson GR (2003) Pesticide use and world food production: risks and benefits. ACS Publications, Washington, DC

    Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2(5):295–300

    Article  CAS  Google Scholar 

  • Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz M, Rothuizen H, Stutz R (2002) The “millipede”-nanotechnology entering data storage. IEEE Trans Nanotech 99(1):39–55

    Article  Google Scholar 

  • West JL, Halas NJ (2000) Applications of nanotechnology to biotechnology: commentary. Curr Opin Biotech 11(2):215–217

    Article  CAS  PubMed  Google Scholar 

  • Wickline SA, Neubauer AM, Winter P, Caruthers S, Lanza G (2006) Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 26(3):435–441

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Searle PF, Onion D, Mautner V (2006) Viral gene therapy strategies: from basic science to clinical application. The J Pathol 208(2):299–318

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM (2003) Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 9:465–472

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javad, S., Ansari, M., Akhtar, I. (2018). Future Prospects of Nanobotany. In: Javad, S., Butt, A. (eds) Nanobotany. Springer, Cham. https://doi.org/10.1007/978-3-319-77119-9_11

Download citation

Publish with us

Policies and ethics