Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 426 Accesses

Abstract

This chapter provides the results obtained from single-molecule studies using iSCAT on a construct of myosin 5a with an N-terminal biotin ligand, which was conjugated with different sized gold nanoparticles, and a C-terminal GFP ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrecka, J., et al.: Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. eLife 4, e05413 (2015)

    Google Scholar 

  2. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007)

    Article  CAS  Google Scholar 

  3. Vale, R.D.: Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell. Biol. 163, 445–450 (2003)

    Article  CAS  Google Scholar 

  4. Mehta, A.D., et al.: Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)

    Article  CAS  Google Scholar 

  5. Rief, M., et al.: Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2000)

    Article  CAS  Google Scholar 

  6. Forkey, J.N., Quinlan, M.E., Alexander Shaw, M., Corrie, J.E.T., Goldman, Y.E.: Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003)

    Article  CAS  Google Scholar 

  7. Yildiz, A., et al.: Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)

    Article  CAS  Google Scholar 

  8. Snyder, G.E., Sakamoto, T., Hammer III, J.A., Sellers, J.R., Selvin, P.R.: Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys. J. 87, 1776–1783 (2004)

    Article  CAS  Google Scholar 

  9. Warshaw, D.M., et al.: Differential labeling of myosin v heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88, L30–L32 (2005)

    Article  CAS  Google Scholar 

  10. Sellers, J.R., Veigel, C.: Walking with myosin V. Curr. Opin. Cell Biol. 18, 68–73 (2006)

    Article  CAS  Google Scholar 

  11. Hammer III, J.A., Sellers, J.R.: Walking to work: roles for class V myosins as cargo transporters. Nat. Rev. Mol. Cell Biol. 13, 13–26 (2011)

    Article  Google Scholar 

  12. De La Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M., Sweeney, H.L.: The kinetic mechanism of myosin V. Proc. Natl. Acad. Sci. USA 13726–13731 (1999)

    Google Scholar 

  13. De La Cruz, E.M., Ostap, E.M.: Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16, 61–67 (2004)

    Article  Google Scholar 

  14. Rosenfeld, S.S., Sweeney, H.L.: A model of myosin V processivity. J. Biol. Chem. 279, 40100–40111 (2004)

    Article  CAS  Google Scholar 

  15. Sakamoto, T., Webb, M.R., Forgacs, E., White, H.D., Sellers, J.R.: Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455, 128–132 (2008)

    Article  CAS  Google Scholar 

  16. Forgacs, E., et al.: Kinetics of ADP dissociation from the trail and lead heads of actomyosin V following the power stroke. J. Biol. Chem. 283, 766–773 (2008)

    Article  CAS  Google Scholar 

  17. Coureux, P.D., et al.: A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003)

    Article  CAS  Google Scholar 

  18. Coureux, P.D., Sweeney, H.L., Houdusse, A.: Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. (2004)

    Google Scholar 

  19. Cecchini, M., Allosteric, A.H.M.K.: Communication in myosin V: from small conformational changes to large directed movements. PLoS Comput. Biol. 4, e1000129 (2008)

    Article  CAS  Google Scholar 

  20. Sweeney, H.L., Houdusse, A.: Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010)

    Article  CAS  Google Scholar 

  21. Preller, M., Holmes, K.C.: The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 70, 651–660 (2013)

    Article  CAS  Google Scholar 

  22. Volkmann, N., et al.: The structural basis of myosin V processive movement as revealed by electron cryomicroscopy. Mol. Cell 19, 595–605 (2005)

    Article  CAS  Google Scholar 

  23. Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R., Molloy, J.E.: The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65 (2001)

    Article  Google Scholar 

  24. Craig, E.M., Linke, H.: Mechanochemical model for myosin V. Proc. Natl. Acad. Sci. USA 106, 18261–18266 (2009)

    Article  CAS  Google Scholar 

  25. Hinczewski, M., Tehver, R., Thirumalai, D.: Design principles governing the motility of myosin V. Proc. Natl. Acad. Sci. USA 110, E4059–E4068 (2013)

    Article  CAS  Google Scholar 

  26. Dunn, A.R., Spudich, J.A.: Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007)

    Article  CAS  Google Scholar 

  27. Beausang, J.F., Shroder, D.Y., Nelson, P.C., Goldman, Y.E.: Tilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy. Biophys. J. 104, 1263–1273 (2013)

    Article  CAS  Google Scholar 

  28. Uemura, S., Higuchi, H., Olivares, A.O., De La Cruz, E.M., Ishiwata, S.: Mechanochemical coupling of two substeps in a single myosin V motor. Nat. Struct. Mol. Biol. 11, 877–883 (2004)

    Article  CAS  Google Scholar 

  29. Cappello, G., et al.: Myosin V stepping mechanism. Proc. Natl. Acad. Sci. USA 104, 15328–15333 (2007)

    Article  CAS  Google Scholar 

  30. Sellers, J.R., Veigel, C.: Direct observation of the myosin-Va power stroke and its reversal. Nat. Struct. Mol. Biol. 17, 590–595 (2010)

    Article  CAS  Google Scholar 

  31. Okada, T., et al.: The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits. Biochem. Biophys. Res. Commun. 354, 379–384 (2007)

    Article  CAS  Google Scholar 

  32. Shiroguchi, K., Kinosita Jr., K.: Myosin V walks by lever action and brownian motion. Science 316, 1208–1212 (2007)

    Article  CAS  Google Scholar 

  33. Karagiannis, P., Ishii, Y., Yanagida, T.: Molecular machines like myosin use randomness to behave predictably. Chem. Rev. 114, 3318–3334 (2014)

    Article  CAS  Google Scholar 

  34. Shiroguchi, K., et al.: Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin. Plos Biol. 9, e1001031 (2011)

    Article  CAS  Google Scholar 

  35. Fujita, K., Iwaki, M., Iwane, A.H., Marcucci, L., Yanagida, T.: Switching of myosin-V motion between the lever-arm swing and brownian search-and-catch. Nat. Commun. 3, 956 (2012)

    Article  Google Scholar 

  36. Spudich, J.A., Watt, S.: The regulation of rabbit skeletal muscle contraction I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971)

    CAS  Google Scholar 

  37. Wang, F., et al.: Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J. Biol. Chem. 275, 4329–4335 (2000)

    Article  CAS  Google Scholar 

  38. Dunn, A.R., Spudich, J.A.: Single-molecule gold-nanoparticle tracking. Cold Spring Harb. Protoc. 2011, 1498–1506 (2011)

    Article  Google Scholar 

  39. Ortega Arroyo, J., et al.: Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014)

    Google Scholar 

  40. Komori, Y., Iwane, A.H., Yanagida, T.: Myosin-V makes two brownian 90\(^{\circ }\) rotations per 36-nm step. Nat. Struct. Mol. Biol. 14, 968–973 (2007)

    Article  CAS  Google Scholar 

  41. Ohmachi, M., et al.: Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012)

    Article  CAS  Google Scholar 

  42. Nishikawa, S., et al.: Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 142, 879–888 (2010)

    Article  CAS  Google Scholar 

  43. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H.M., Ewers, H.: A simple, versatile method for GFP-based single molecule localization microscopy. Biophys. J. 102, 419A–419A (2012)

    Article  Google Scholar 

  44. Kubitscheck, U., Kückmann, O., Kues, T., Peters, R.: Imaging and tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179 (2000)

    Article  CAS  Google Scholar 

  45. Hua, W., Chung, J., Gelles, J.: Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002)

    Article  CAS  Google Scholar 

  46. Blumberg, S., Gajraj, A., Pennington, M.W., Meiners, J.-C.C.: Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy. Biophys. J. 89, 1272–1281 (2005)

    Article  CAS  Google Scholar 

  47. Knight, P.J., et al.: Two-headed binding of a processive myosin to F-actin: abstract: nature. Nature 405, 804–807 (2000)

    Article  Google Scholar 

  48. Burgess, S.A., et al.: The prepower stroke conformation of myosin V. J. Cell. Biol. 159, 983–991 (2002)

    Article  CAS  Google Scholar 

  49. Oke, O.A., et al.: Influence of lever structure on myosin 5a walking. Proc. Natl. Acad. Sci. USA 107, 2509–2514 (2010)

    Article  CAS  Google Scholar 

  50. Syed, S., Snyder, G.E., Franzini-Armstrong, C., Selvin, P.R., Goldman, Y.E.: Adaptability of myosin V studied by simultaneous detection of position and orientation. EMBO J. 25, 1795–1803 (2006)

    Article  CAS  Google Scholar 

  51. Enderlein, J., Toprak, E., Selvin, P.R.: Polarization effect on position accuracy of fluorophore localization. Opt. Express. 14, 8111–8120 (2006)

    Article  CAS  Google Scholar 

  52. Kodera, N., Yamamoto, D., Ishikawa, R., Ando, T.: Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010)

    Article  CAS  Google Scholar 

  53. Ando, T., Uchihashi, T., Kodera, N.: High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42, 393–414 (2013)

    Article  CAS  Google Scholar 

  54. Takagi, Y., et al.: Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. In: Proceedings of the National Academy of Sciences (2014)

    Google Scholar 

  55. Liu, A.P., Fletcher, D.A.: Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. (2006)

    Google Scholar 

  56. Howard, J.: The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996)

    Article  CAS  Google Scholar 

  57. Schindler, T.D., Chen, L., Lebel, P., Nakamura, M., Bryant, Z.: Engineering myosins for long-range transport on actin filaments. Nat. Nanotechnol. 9, 33–38 (2013)

    Article  Google Scholar 

  58. Nakamura, M., et al.: Remote control of myosin and kinesin motors using light-activated gearshifting. Nat. Nanotechnol. 9, 693–697 (2014)

    Article  CAS  Google Scholar 

  59. Liber, M., Tomov, T.E., Tsukanov, R., Berger, Y., Nir, E.: A bipedal DNA motor that travels back and forth between two DNA origami tiles. Small 11, 568–575 (2015)

    Article  CAS  Google Scholar 

  60. Kalinin, S., Valeri, A., Antonik, M., Felekyan, S., Seidel, C.A.M.: Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114, 7983–7995 (2010)

    Article  CAS  Google Scholar 

  61. Manley, S., et al.: High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008)

    Article  CAS  Google Scholar 

  62. Cognet, L., Leduc, C., Lounis, B.: Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr. Opin. Chem. Biol. 20, 78–85 (2014)

    Article  CAS  Google Scholar 

  63. Krishnan, M., Mojarad, N.M., Kukura, P., Sandoghdar, V.: Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010)

    Article  CAS  Google Scholar 

  64. Jin, S., Haggie, P.M., Verkman, A.S.: Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR Cl channels. Biophys. J. 93, 1079–1088 (2007)

    Article  CAS  Google Scholar 

  65. Masson, J.-B., et al.: Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106, 74–83 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Ortega Arroyo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortega Arroyo, J. (2018). Structural Dynamics of Myosin 5a. In: Investigation of Nanoscopic Dynamics and Potentials by Interferometric Scattering Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77095-6_5

Download citation

Publish with us

Policies and ethics