Extended Linear Acceptors with an Indacenodithiophene Core

  • Sarah HollidayEmail author
Part of the Springer Theses book series (Springer Theses)


The conclusions from Chap.  3 indicated two ways in which the molecular design of FBR could be changed in order to improve the photovoltaic performance with the wide bandgap polymer P3HT. Firstly, decreasing the optical bandgap to give complementary absorption with P3HT would allow a greater portion of the incident solar spectrum to be harvested as photocurrent. Secondly, the miscibility with P3HT should be reduced slightly in order to deliver a more phase-separated microstructure with reduced charge recombination in the blend. In order to address both these aspects simultaneously, the 9,9′-dioctylfluorene core on FBR was replaced with the more extended indacenodithiophene (IDT). The donation of electrons from the sulphur atom lone pairs into the π-system makes indacenodithiophene a more electron rich core relative to fluorene, which has the effect of raising the HOMO energy.


Indacenodithiophene (IDT) Incident Solar Spectrum P3HT Device P3HT Blend Grazing Incidence X-ray Diffraction (GIXRD) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhang X, Bronstein H, Kronemeijer AJ, Smith J, Kim Y, Kline RJ, Richter LJ, Anthopoulos TD, Sirringhaus H, Song K, Heeney M, Zhang W, McCulloch I, DeLongchamp DM (2013) Nat Commun 4Google Scholar
  2. 2.
    Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M, Kepa M, Hurhangee M, Kronemeijer AJ, Pecunia V, Nasrallah I, Romanov I, Broch K, McCulloch I, Emin D, Olivier Y, Cornil J, Beljonne D, Sirringhaus H (2014) Nature 515:384CrossRefGoogle Scholar
  3. 3.
    Bronstein H, Leem DS, Hamilton R, Woebkenberg P, King S, Zhang W, Ashraf RS, Heeney M, Anthopoulos TD, Mello JD, McCulloch I (2011) Macromolecules 44:6649Google Scholar
  4. 4.
    Mei J, Bao Z (2014) Chem Mater 26:604CrossRefGoogle Scholar
  5. 5.
    Meager I, Ashraf RS, Mollinger S, Schroeder BC, Bronstein H, Beatrup D, Vezie MS, Kirchartz T, Salleo A, Nelson J, McCulloch I (2013) J Am Chem Soc 135:11537CrossRefGoogle Scholar
  6. 6.
    Zhang W, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, Kirkpatrick J, Ashraf S, Anthopoulos T, Heeney M, McCulloch I (2010) J Am Chem Soc 132:11437CrossRefGoogle Scholar
  7. 7.
    Liversedge IA, Higgins SJ, Giles M, Heeney M, McCulloch I (2006) Tetrahedron Lett 47:5143CrossRefGoogle Scholar
  8. 8.
    Jayakannan M, van Dongen JLJ, Janssen RAJ (2001) Macromolecules 34:5386CrossRefGoogle Scholar
  9. 9.
    Jayakannan M, Lou X, van Dongen JLJ, Janssen RAJ (2005) J Polym Sci, Part A: Polym Chem 43:1454CrossRefGoogle Scholar
  10. 10.
    McCulloch I, Ashraf RS, Biniek L, Bronstein H, Combe C, Donaghey JE, James DI, Nielsen CB, Schroeder BC, Zhang W (2012) Acc Chem Res 45:714CrossRefGoogle Scholar
  11. 11.
    Zhang M, Guo X, Ma W, Ade H, Hou J (2014) Adv Mater 26:5880CrossRefGoogle Scholar
  12. 12.
    Cook S, Furube A, Katoh R (2008) Energy Environ Sci 1:294CrossRefGoogle Scholar
  13. 13.
    Günes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324CrossRefGoogle Scholar
  14. 14.
    Jackson NE, Savoie BM, Kohlstedt KL, Olvera de la Cruz M, Schatz GC, Chen LX, Ratner MA (2013) Am Chem Soc 135:10475CrossRefGoogle Scholar
  15. 15.
    Welch GC, Bakus RC, Teat SJ, Bazan GC (2013) J Am Chem Soc 135:2298CrossRefGoogle Scholar
  16. 16.
    Karikomi M, Kitamura C, Tanaka S, Yamashita Y (1995) J Am Chem Soc 117:6791CrossRefGoogle Scholar
  17. 17.
    Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184CrossRefGoogle Scholar
  18. 18.
    Yasuda T, Sakai Y, Aramaki S, Yamamoto T (2005) Chem Mater 17:6060CrossRefGoogle Scholar
  19. 19.
    Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, Ma W, Zhan X (2015) Energy Environ Sci 8:3215CrossRefGoogle Scholar
  20. 20.
    Troisi A, Orlandi G, Anthony JE (2005) Chem Mater 17:5024CrossRefGoogle Scholar
  21. 21.
    Anthony JE, Brooks JS, Eaton DL, Matson JR, Parkin SR (2003) 5217:124Google Scholar
  22. 22.
    Xu Z, Chen L-M, Yang G, Huang C-H, Hou J, Wu Y, Li G, Hsu C-S, Yang Y (2009) Adv Funct Mater 19:1227CrossRefGoogle Scholar
  23. 23.
    Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger A (2011) J Adv Mater 23:1679CrossRefGoogle Scholar
  24. 24.
    Shao M, Keum J, Chen J, He Y, Chen W, Browning JF, Jakowski J, Sumpter BG, Ivanov IN, Ma YZ, Rouleau CM, Smith SC, Geohegan DB, Hong K, Xiao K (2014) Nat Commun 5Google Scholar
  25. 25.
    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2013) Nat Commun 4:1446CrossRefGoogle Scholar
  26. 26.
    Gasparini N, Katsouras A, Prodromidis MI, Avgeropoulos A, Baran D, Salvador M, Fladischer S, Spiecker E, Chochos CL, Ameri T, Brabec CJ (2015) Adv Funct Mater 25:4898CrossRefGoogle Scholar
  27. 27.
    Hawks SA, Deledalle F, Yao J, Rebois DG, Li G, Nelson J, Yang Y, Kirchartz T, Durrant JR (2013) Adv Energy Mater 3:1201CrossRefGoogle Scholar
  28. 28.
    Credgington D, Hamilton R, Atienzar P, Nelson J, Durrant JR (2011) Adv Funct Mater 21:2744CrossRefGoogle Scholar
  29. 29.
    Baran D, Vezie MS, Gasparini N, Deledalle F, Yao J, Schroeder BC, Bronstein H, Ameri T, Kirchartz T, McCulloch I, Nelson J, Brabec CJ (2015) J Phys Chem C 119:19668CrossRefGoogle Scholar
  30. 30.
    Nielsen CB, McCulloch I (2013) Prog Polym Sci 38:2053CrossRefGoogle Scholar
  31. 31.
    Dimitrov SD, Huang Z, Deledalle F, Nielsen CB, Schroeder BC, Ashraf RS, Shoaee S, McCulloch I, Durrant JR (1037) Energy Environ Sci 2014:7Google Scholar
  32. 32.
    Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC (2012) Adv Mater 24:580CrossRefGoogle Scholar
  33. 33.
    Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E, White JM, Williamson RM, Subbiah J, Ouyang J, Holmes AB, Wong WWH, Jones DJ (2015) Nat Commun 6Google Scholar
  34. 34.
    Lu L, Yu L (2014) Adv Mater 26:4413CrossRefGoogle Scholar
  35. 35.
    Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y (2015) Nat Photon 9:35CrossRefGoogle Scholar
  36. 36.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Nat Commun 5Google Scholar
  37. 37.
    Reese MO, Gevorgyan SA, Jørgensen M, Bundgaard E, Kurtz SR, Ginley DS, Olson DC, Lloyd MT, Morvillo P, Katz EA, Elschner A, Haillant O, Currier TR, Shrotriya V, Hermenau M, Riede MR, Kirov K, Trimmel G, Rath T, Inganäs O, Zhang F, Andersson M, Tvingstedt K, Lira-Cantu M, Laird D, McGuiness C, Gowrisanker S, Pannone M, Xiao M, Hauch J, Steim R, DeLongchamp DM, Rösch R, Hoppe H, Espinosa N, Urbina A, Yaman-Uzunoglu G, Bonekamp JB, van Breemen AJJM, Girotto C, Voroshazi E, Krebs FC (2011) Sol Energy Mater Sol Cells 95:1253Google Scholar
  38. 38.
    Liao H-C, Ho C-C, Chang C-Y, Jao M-H, Darling SB, Su W-F (2013) Mater Today 16:326CrossRefGoogle Scholar
  39. 39.
    Peters CH, Sachs-Quintana IT, Kastrop JP, Beaupré S, Leclerc M, McGehee MD (2011) Adv Energy Mater 1:491CrossRefGoogle Scholar
  40. 40.
    Schroeder BC, Li Z, Brady MA, Faria GC, Ashraf RS, Takacs CJ, Cowart JS, Duong DT, Chiu KH, Tan C-H, Cabral JT, Salleo A, Chabinyc ML, Durrant JR, McCulloch I (2014) Angew Chem Int Ed 53:12870CrossRefGoogle Scholar
  41. 41.
    Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Nat Mater 7:158CrossRefGoogle Scholar
  42. 42.
    Bai H, Wang Y, Cheng P, Wang J, Wu Y, Hou J, Zhan XJ (1910) Mater Chem A 2015:3Google Scholar
  43. 43.
    Lin Y, Zhang Z-G, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X (2015) Energy Environ Sci 8:610CrossRefGoogle Scholar
  44. 44.
    Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, Ma W, Zhan X (2015) Energy Environ Sci 8:3215CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryImperial College LondonLondonUK

Personalised recommendations