Skip to main content

A Simple Linear Acceptor with Dye-Based Flanking Groups

  • Chapter
  • First Online:
  • 405 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

When designing a material to replace fullerenes, one of the most important considerations is that the structure should be easily modified to facilitate materials optimisation and rapid advancement in this field, as well as allowing for the properties of the acceptor to be tuned with respect to a particular donor material or a preferred set of processing conditions. In addition, the synthesis should ideally be straightforward and scalable in the interest of technological scale-up.

Parts of this chapter were reproduced from Holliday et al. [56]. http://pubs.acs.org/doi/abs/10.1021/ja5110602.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:954

    Article  CAS  Google Scholar 

  2. Xu T, Yu L (2014) Mater Today 17:11

    Article  CAS  Google Scholar 

  3. Pushkara Rao V, Jen KYA, Caldwell JB (1994) Tetrahedron Lett 35:3849

    Google Scholar 

  4. Marinado T, Hagberg DP, Hedlund M, Edvinsson T, Johansson EM, Boschloo G, Rensmo H, Brinck T, Sun L, Hagfeldt A (2009) Phys Chem Chem Phys 11:133

    Article  CAS  Google Scholar 

  5. Insuasty A, Ortiz A, Tigreros A, Solarte E, Insuasty B, Martín N (2011) Dyes Pigm 88:385

    Article  CAS  Google Scholar 

  6. Li Z, He G, Wan X, Liu Y, Zhou J, Long G, Zuo Y, Zhang M, Chen Y (2012) Adv. Energy Mater. 2:74

    Article  CAS  Google Scholar 

  7. Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y (2013) J Am Chem Soc 135:8484

    Article  CAS  Google Scholar 

  8. Liu Y, Chen C-C, Hong Z, Gao J, Yang Y, Zhou H, Dou L, Li G (2013) Sci Rep 3:3356

    Article  Google Scholar 

  9. Kim Y, Song CE, Moon S-J, Lim E (2014) Chem Commun 50:8235

    Article  CAS  Google Scholar 

  10. Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD (2014) J Am Chem Soc 136:9608

    Article  CAS  Google Scholar 

  11. Zoombelt AP, Mathijssen SGJ, Turbiez MGR, Wienk MM, Janssen RAJ (2010) J Mater Chem 20:2240

    Article  CAS  Google Scholar 

  12. Cho SY, Grimsdale AC, Jones DJ, Watkins SE, Holmes AB (2007) J Am Chem Soc 129:11910

    Article  CAS  Google Scholar 

  13. Anctil A, Babbitt CW, Raffaelle RP, Landi BJ (2011) Environ Sci Technol 45:2353

    Article  CAS  Google Scholar 

  14. Siddiki MK, Li J, Galipeau D, Qiao Q (2010) Energ Environ Sci 3:867

    Article  CAS  Google Scholar 

  15. He Y, Li Y (1970) Phys Chem Chem Phys 2011:13

    Google Scholar 

  16. Dennler G, Scharber MC, Brabec C (2009) J Adv Mater 21:1323

    Article  CAS  Google Scholar 

  17. Larson BW, Whitaker JB, Wang X-B, Popov AA, Rumbles G, Kopidakis N, Strauss SH, Boltalina OV (2013) J Phys Chem C 117:14958

    Article  CAS  Google Scholar 

  18. Liu T, Troisi A (1038) Adv Mater 2013:25

    Google Scholar 

  19. Dang MT, Hirsch L, Wantz G (2011) Adv Mater 23:3597

    Article  CAS  Google Scholar 

  20. Agostinelli T, Lilliu S, Labram JG, Campoy-Quiles M, Hampton M, Pires E, Rawle J, Bikondoa O, Bradley DDC, Anthopoulos TD, Nelson J, Macdonald JE (2011) Adv Funct Mater 21:1701

    Article  CAS  Google Scholar 

  21. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85

    Article  CAS  Google Scholar 

  22. Mihailetchi VD, Xie HX, de Boer B, Koster LJA, Blom PWM (2006) Adv Funct Mater 16:699

    Article  CAS  Google Scholar 

  23. Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch, I (2015) Acc Chem Res

    Google Scholar 

  24. Jamieson FC, Domingo EB, McCarthy-Ward T, Heeney M, Stingelin N, Durrant JR (2012) Chem. Sci. 3:485

    Article  CAS  Google Scholar 

  25. Ayzner AL, Doan SC, Tremolet de Villers B, Schwartz BJ (2012) J Phys Chem Lett 3:2281

    Article  CAS  Google Scholar 

  26. Credgington D, Durrant JR (2012) J Phys Chem Lett 3:1465

    Article  CAS  Google Scholar 

  27. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Adv Funct Mater 17:1636

    Article  Google Scholar 

  28. Li G, Zhu R, Yang Y (2012) Nature Photon 6:153

    Article  CAS  Google Scholar 

  29. Na JY, Kang B, Sin DH, Cho K, Park YD (2015) Sci Rep 5:13288

    Article  Google Scholar 

  30. Yang H, LeFevre SW, Ryu CY, Bao Z (2007) Appl Phys Lett 90:172116

    Article  Google Scholar 

  31. Tremel K, Ludwigs S (2014) In P3HT revisited–from molecular scale to solar cell devices. Springer, 2014, p 39

    Google Scholar 

  32. Zhao J, Swinnen A, Van Assche G, Manca J, Vanderzande D, Mele BV (2009) J Phys Chem B 113:1587

    Article  CAS  Google Scholar 

  33. Wang S, Qu Y, Li S, Ye F, Chen Z, Yang X (2015) Adv Funct Mater 25:748

    Article  CAS  Google Scholar 

  34. Mott NF, Gurney RW (1948) Electronic processes in ionic crystals. Clarendon Press, Oxford

    Google Scholar 

  35. Zeman M, Krc J (2008) J Mater Res 23:889

    Article  CAS  Google Scholar 

  36. Kirchartz T (2013) Beilstein Journal of Nanotechnology 4:180

    Article  CAS  Google Scholar 

  37. Dacuña J, Salleo A (2011) Phys Rev B: Condens Matter 84:195209

    Article  Google Scholar 

  38. Schroeder BC, Li Z, Brady MA, Faria GC, Ashraf RS, Takacs CJ, Cowart JS, Duong DT, Chiu KH, Tan C-H, Cabral JT, Salleo A, Chabinyc ML, Durrant JR, McCulloch I (2014) Angew Chem Int Ed 53:12870

    Article  CAS  Google Scholar 

  39. Müller C, Ferenczi TAM, Campoy-Quiles M, Frost JM, Bradley DDC, Smith P, Stingelin-Stutzmann N, Nelson J (2008) Adv Mater 20:3510

    Article  Google Scholar 

  40. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Nat Mater 7:158

    Article  CAS  Google Scholar 

  41. Fang Y, Pandey AK, Lyons DM, Shaw PE, Watkins SE, Burn PL, Lo SC, Meredith P (2014) ChemPhysChem

    Google Scholar 

  42. Nielsen CB, Voroshazi E, Holliday S, Cnops K, Rand BP, McCulloch IJ (2013) Mater Chem A 1:73

    Article  CAS  Google Scholar 

  43. Schwenn PE, Gui K, Nardes AM, Krueger KB, Lee KH, Mutkins K, Rubinstein-Dunlop H, Shaw PE, Kopidakis N, Burn PL, Meredith P (2011) Adv Energy Mater 1:73

    Article  CAS  Google Scholar 

  44. Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y (2015) Nat Photon 9:35

    Article  CAS  Google Scholar 

  45. Kim Y, Song CE, Moon S-J, Lim E (2014) Chem Commun 50:8235

    Article  CAS  Google Scholar 

  46. Zhang Q, Wang Y, Kan B, Wan X, Liu F, Ni W, Feng H, Russell TP, Chen Y (2015) Chem Commun 51:15268

    Article  CAS  Google Scholar 

  47. Bredas J-L (2014) Mater. Horiz. 1:17

    Article  CAS  Google Scholar 

  48. Khanna YP, Kuhn WP (1997) J Polym Sci, Part B: Polym Phys 35:2219

    Article  CAS  Google Scholar 

  49. Chang L, Jacobs IE, Augustine MP, Moulé AJ (2013) Org Electron 14:2431

    Article  CAS  Google Scholar 

  50. McNeill CR, Halls JJM, Wilson R, Whiting GL, Berkebile S, Ramsey MG, Friend RH, Greenham NC (2008) Adv Funct Mater 18:2309

    Article  CAS  Google Scholar 

  51. Xu Z, Chen L-M, Yang G, Huang C-H, Hou J, Wu Y, Li G, Hsu C-S, Yang Y (2009) Adv Funct Mater 19:1227

    Article  CAS  Google Scholar 

  52. Treat ND, Brady MA, Smith G, Toney MF, Kramer EJ, Hawker CJ, Chabinyc ML (2011) Adv Energy Mater 1:82

    Article  CAS  Google Scholar 

  53. Kokubu R, Yang Y (2012) Phys Chem Chem Phys 14:8313

    Article  CAS  Google Scholar 

  54. Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lin Lai JY, Hu H, Yu D, Yan H (2015) Energy Environ Sci 8:520

    Article  CAS  Google Scholar 

  55. Kokubu R, Yang Y (2012) Phys Chem Chem Phys 14:8313

    Article  CAS  Google Scholar 

  56. Holliday S, Ashraf RS, Nielsen CB, Kirkus M, Röhr JA, Tan C-H, Collado-Fregoso E, Knall A-C, Durrant JR, Nelson J, McCulloch I (2014) J Am Chem Soc 137:898

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Holliday .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holliday, S. (2018). A Simple Linear Acceptor with Dye-Based Flanking Groups. In: Synthesis and Characterisation of Non-Fullerene Electron Acceptors for Organic Photovoltaics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77091-8_3

Download citation

Publish with us

Policies and ethics