A Simple Linear Acceptor with Dye-Based Flanking Groups

  • Sarah HollidayEmail author
Part of the Springer Theses book series (Springer Theses)


When designing a material to replace fullerenes, one of the most important considerations is that the structure should be easily modified to facilitate materials optimisation and rapid advancement in this field, as well as allowing for the properties of the acceptor to be tuned with respect to a particular donor material or a preferred set of processing conditions. In addition, the synthesis should ideally be straightforward and scalable in the interest of technological scale-up.


  1. 1.
    Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:954CrossRefGoogle Scholar
  2. 2.
    Xu T, Yu L (2014) Mater Today 17:11CrossRefGoogle Scholar
  3. 3.
    Pushkara Rao V, Jen KYA, Caldwell JB (1994) Tetrahedron Lett 35:3849Google Scholar
  4. 4.
    Marinado T, Hagberg DP, Hedlund M, Edvinsson T, Johansson EM, Boschloo G, Rensmo H, Brinck T, Sun L, Hagfeldt A (2009) Phys Chem Chem Phys 11:133CrossRefGoogle Scholar
  5. 5.
    Insuasty A, Ortiz A, Tigreros A, Solarte E, Insuasty B, Martín N (2011) Dyes Pigm 88:385CrossRefGoogle Scholar
  6. 6.
    Li Z, He G, Wan X, Liu Y, Zhou J, Long G, Zuo Y, Zhang M, Chen Y (2012) Adv. Energy Mater. 2:74CrossRefGoogle Scholar
  7. 7.
    Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y (2013) J Am Chem Soc 135:8484CrossRefGoogle Scholar
  8. 8.
    Liu Y, Chen C-C, Hong Z, Gao J, Yang Y, Zhou H, Dou L, Li G (2013) Sci Rep 3:3356CrossRefGoogle Scholar
  9. 9.
    Kim Y, Song CE, Moon S-J, Lim E (2014) Chem Commun 50:8235CrossRefGoogle Scholar
  10. 10.
    Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD (2014) J Am Chem Soc 136:9608CrossRefGoogle Scholar
  11. 11.
    Zoombelt AP, Mathijssen SGJ, Turbiez MGR, Wienk MM, Janssen RAJ (2010) J Mater Chem 20:2240CrossRefGoogle Scholar
  12. 12.
    Cho SY, Grimsdale AC, Jones DJ, Watkins SE, Holmes AB (2007) J Am Chem Soc 129:11910CrossRefGoogle Scholar
  13. 13.
    Anctil A, Babbitt CW, Raffaelle RP, Landi BJ (2011) Environ Sci Technol 45:2353CrossRefGoogle Scholar
  14. 14.
    Siddiki MK, Li J, Galipeau D, Qiao Q (2010) Energ Environ Sci 3:867CrossRefGoogle Scholar
  15. 15.
    He Y, Li Y (1970) Phys Chem Chem Phys 2011:13Google Scholar
  16. 16.
    Dennler G, Scharber MC, Brabec C (2009) J Adv Mater 21:1323CrossRefGoogle Scholar
  17. 17.
    Larson BW, Whitaker JB, Wang X-B, Popov AA, Rumbles G, Kopidakis N, Strauss SH, Boltalina OV (2013) J Phys Chem C 117:14958CrossRefGoogle Scholar
  18. 18.
    Liu T, Troisi A (1038) Adv Mater 2013:25Google Scholar
  19. 19.
    Dang MT, Hirsch L, Wantz G (2011) Adv Mater 23:3597CrossRefGoogle Scholar
  20. 20.
    Agostinelli T, Lilliu S, Labram JG, Campoy-Quiles M, Hampton M, Pires E, Rawle J, Bikondoa O, Bradley DDC, Anthopoulos TD, Nelson J, Macdonald JE (2011) Adv Funct Mater 21:1701CrossRefGoogle Scholar
  21. 21.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85CrossRefGoogle Scholar
  22. 22.
    Mihailetchi VD, Xie HX, de Boer B, Koster LJA, Blom PWM (2006) Adv Funct Mater 16:699CrossRefGoogle Scholar
  23. 23.
    Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch, I (2015) Acc Chem ResGoogle Scholar
  24. 24.
    Jamieson FC, Domingo EB, McCarthy-Ward T, Heeney M, Stingelin N, Durrant JR (2012) Chem. Sci. 3:485CrossRefGoogle Scholar
  25. 25.
    Ayzner AL, Doan SC, Tremolet de Villers B, Schwartz BJ (2012) J Phys Chem Lett 3:2281CrossRefGoogle Scholar
  26. 26.
    Credgington D, Durrant JR (2012) J Phys Chem Lett 3:1465CrossRefGoogle Scholar
  27. 27.
    Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Adv Funct Mater 17:1636CrossRefGoogle Scholar
  28. 28.
    Li G, Zhu R, Yang Y (2012) Nature Photon 6:153CrossRefGoogle Scholar
  29. 29.
    Na JY, Kang B, Sin DH, Cho K, Park YD (2015) Sci Rep 5:13288CrossRefGoogle Scholar
  30. 30.
    Yang H, LeFevre SW, Ryu CY, Bao Z (2007) Appl Phys Lett 90:172116CrossRefGoogle Scholar
  31. 31.
    Tremel K, Ludwigs S (2014) In P3HT revisited–from molecular scale to solar cell devices. Springer, 2014, p 39Google Scholar
  32. 32.
    Zhao J, Swinnen A, Van Assche G, Manca J, Vanderzande D, Mele BV (2009) J Phys Chem B 113:1587CrossRefGoogle Scholar
  33. 33.
    Wang S, Qu Y, Li S, Ye F, Chen Z, Yang X (2015) Adv Funct Mater 25:748CrossRefGoogle Scholar
  34. 34.
    Mott NF, Gurney RW (1948) Electronic processes in ionic crystals. Clarendon Press, OxfordGoogle Scholar
  35. 35.
    Zeman M, Krc J (2008) J Mater Res 23:889CrossRefGoogle Scholar
  36. 36.
    Kirchartz T (2013) Beilstein Journal of Nanotechnology 4:180CrossRefGoogle Scholar
  37. 37.
    Dacuña J, Salleo A (2011) Phys Rev B: Condens Matter 84:195209CrossRefGoogle Scholar
  38. 38.
    Schroeder BC, Li Z, Brady MA, Faria GC, Ashraf RS, Takacs CJ, Cowart JS, Duong DT, Chiu KH, Tan C-H, Cabral JT, Salleo A, Chabinyc ML, Durrant JR, McCulloch I (2014) Angew Chem Int Ed 53:12870CrossRefGoogle Scholar
  39. 39.
    Müller C, Ferenczi TAM, Campoy-Quiles M, Frost JM, Bradley DDC, Smith P, Stingelin-Stutzmann N, Nelson J (2008) Adv Mater 20:3510CrossRefGoogle Scholar
  40. 40.
    Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Nat Mater 7:158CrossRefGoogle Scholar
  41. 41.
    Fang Y, Pandey AK, Lyons DM, Shaw PE, Watkins SE, Burn PL, Lo SC, Meredith P (2014) ChemPhysChemGoogle Scholar
  42. 42.
    Nielsen CB, Voroshazi E, Holliday S, Cnops K, Rand BP, McCulloch IJ (2013) Mater Chem A 1:73CrossRefGoogle Scholar
  43. 43.
    Schwenn PE, Gui K, Nardes AM, Krueger KB, Lee KH, Mutkins K, Rubinstein-Dunlop H, Shaw PE, Kopidakis N, Burn PL, Meredith P (2011) Adv Energy Mater 1:73CrossRefGoogle Scholar
  44. 44.
    Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y (2015) Nat Photon 9:35CrossRefGoogle Scholar
  45. 45.
    Kim Y, Song CE, Moon S-J, Lim E (2014) Chem Commun 50:8235CrossRefGoogle Scholar
  46. 46.
    Zhang Q, Wang Y, Kan B, Wan X, Liu F, Ni W, Feng H, Russell TP, Chen Y (2015) Chem Commun 51:15268CrossRefGoogle Scholar
  47. 47.
    Bredas J-L (2014) Mater. Horiz. 1:17CrossRefGoogle Scholar
  48. 48.
    Khanna YP, Kuhn WP (1997) J Polym Sci, Part B: Polym Phys 35:2219CrossRefGoogle Scholar
  49. 49.
    Chang L, Jacobs IE, Augustine MP, Moulé AJ (2013) Org Electron 14:2431CrossRefGoogle Scholar
  50. 50.
    McNeill CR, Halls JJM, Wilson R, Whiting GL, Berkebile S, Ramsey MG, Friend RH, Greenham NC (2008) Adv Funct Mater 18:2309CrossRefGoogle Scholar
  51. 51.
    Xu Z, Chen L-M, Yang G, Huang C-H, Hou J, Wu Y, Li G, Hsu C-S, Yang Y (2009) Adv Funct Mater 19:1227CrossRefGoogle Scholar
  52. 52.
    Treat ND, Brady MA, Smith G, Toney MF, Kramer EJ, Hawker CJ, Chabinyc ML (2011) Adv Energy Mater 1:82CrossRefGoogle Scholar
  53. 53.
    Kokubu R, Yang Y (2012) Phys Chem Chem Phys 14:8313CrossRefGoogle Scholar
  54. 54.
    Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lin Lai JY, Hu H, Yu D, Yan H (2015) Energy Environ Sci 8:520CrossRefGoogle Scholar
  55. 55.
    Kokubu R, Yang Y (2012) Phys Chem Chem Phys 14:8313CrossRefGoogle Scholar
  56. 56.
    Holliday S, Ashraf RS, Nielsen CB, Kirkus M, Röhr JA, Tan C-H, Collado-Fregoso E, Knall A-C, Durrant JR, Nelson J, McCulloch I (2014) J Am Chem Soc 137:898CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryImperial College LondonLondonUK

Personalised recommendations