Advertisement

Multi-parameter Mumford-Shah Segmentation

  • Murat Genctav
  • Sibel Tari
Chapter
Part of the Association for Women in Mathematics Series book series (AWMS, volume 12)

Abstract

Mumford-Shah functional has two parameters that define a two-dimensional scale space of solutions. Instead of using the solution obtained at a predetermined fine-tuned parameter setting, we consider solutions at multiple parameter settings simultaneously. Using multiple solutions, we construct pixel-based features and employ them to extract shapes in images. We experiment with both synthetic and real images.

References

  1. 1.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bergounioux, M., Vicente, D.: Parameter selection in a Mumford–Shah geometrical model for the detection of thin structures. Acta Appl. Math. 141(1), 17–47 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefGoogle Scholar
  4. 4.
    El-Zehiry, N., Sahoo, P., Elmaghraby, A.: Combinatorial Optimization of the piecewise constant Mumford-Shah functional with application to scalar/vector valued and volumetric image segmentation. Image Vis. Comput. 29(6), 365–381 (2011)CrossRefGoogle Scholar
  5. 5.
    Erdem, E., Tari, S.: Mumford-Shah regularizer with contextual feedback. J. Math. Imaging Vis. 33(1), 67–84 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guo, W., Qin, J., Tari, S.: Automatic prior shape selection for image segmentation. Techreport, Computational and Applied Mathematics, UCLA Department of Mathematics (2014)Google Scholar
  7. 7.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pätz, T., Preusser, T.: Ambrosio-Tortorelli segmentation of stochastic images. In: ECCV, pp. 254–267. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. 9.
    Shah, J.: Parameter estimation, multiscale representation and algorithms for energy-minimizing segmentations. In: ICPR, pp. 815–819, vol. I. (1990)Google Scholar
  10. 10.
    Shah, J.: Segmentation by nonlinear diffusion. In: CVPR, pp. 202–207 (1991)Google Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  1. 1.Middle East Technical UniversityAnkaraTurkey
  2. 2.Department of Computer EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations