Exploring 2D Shape Complexity

  • Erin Chambers
  • Tegan Emerson
  • Cindy Grimm
  • Kathryn Leonard
Chapter
Part of the Association for Women in Mathematics Series book series (AWMS, volume 12)

Abstract

In this paper, we explore different notions of shape complexity, drawing from established work in mathematics, computer science, and computer vision. Our measures divide naturally into three main categories: skeleton-based, symmetry-based, and those based on boundary sampling. We apply these to an established library of shapes, using k-medoids clustering to understand what aspects of shape complexity are captured by each notion. Our contributions include a new measure of complexity based on the Blum medial axis and the notion of persistent complexity as captured by histograms at multiple scales rather than a single numerical value.

References

  1. 1.
    Bober, M.: MPEG-7 visual shape descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 716–719 (2001)CrossRefGoogle Scholar
  2. 2.
    Carlier, A., Leonard, K., Hahmann, S., Morin, G., Collins, M.: The 2D shape structure dataset: a user annotated open access database. Comput. Graph. 58, 23–30 (2016)CrossRefGoogle Scholar
  3. 3.
    Chazelle, B., Incerpi, J.: Triangulation and shape-complexity. ACM Trans. Graph. 3(2), 135–152 (1984)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Sundaram, H.: Estimating the complexity of 2D shapes. In: Proceedings of Multimedia Signal Processing Workshop (2005)Google Scholar
  5. 5.
    Feldman, J., Singh, M.: Information along contours and object boundaries. Psychol. Rev. 112(1), 243–252 (2005)CrossRefGoogle Scholar
  6. 6.
    Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM, New York, NY (2006)Google Scholar
  7. 7.
    Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 10, 557–565 (1992)CrossRefGoogle Scholar
  8. 8.
    Larsson, L.J., Morin, G., Begault, A., Chaine, R., Abiva, J., Hubert, E., Hurdal, M., Li, M., Paniagua, B., Tran, G., et al.: Identifying perceptually salient features on 2D shapes. In: Research in Shape Modeling, pp. 129–153. Springer, Cham (2015)Google Scholar
  9. 9.
    Leonard, K.: Efficient shape modeling: epsilon-entropy, adaptive coding, and boundary curves -vs- blum’s medial axis. Int. J. Comput. Vis. 74(2), 183–199 (2007)Google Scholar
  10. 10.
    Leonard, K., Morin, G., Hahmann, S., Carlier, A.: A 2D shape structure for decomposition and part similarity. In: International Conference on Pattern Recognition (2016)Google Scholar
  11. 11.
    Liu, L., Chambers, E.W., Letscher, D., Ju, T.: Extended grassfire transform on medial axes of 2D shapes. Comput. Aided Des. 43(11), 1496–1505 (2011)CrossRefGoogle Scholar
  12. 12.
    McCrae, J., Singh, K.: Sketching piecewise clothoid curves. In: Proceedings of the Fifth Eurographics Conference on Sketch-Based Interfaces and Modeling, pp. 1–8. Eurographics Association, Aire-la-Ville, Switzerland (2008)Google Scholar
  13. 13.
    Mercimek, M., Gulez, K., Mumcu, T.V.: Real object recognition using moment invariants. Sadhana 30(6), 765–775 (2005)CrossRefGoogle Scholar
  14. 14.
    Mitra, N.J., Wand, M., Zhang, H., Cohen-Or, D., Kim, V., Huang, Q.X.: Structure-aware shape processing. In: ACM SIGGRAPH 2014 Courses, pp. 13:1–13:21. ACM, New York, NY (2014)Google Scholar
  15. 15.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Page, D.L., Koschan, A.F., Sukumar, S.R., Roui-Abidi, B., Abidi, M.A.: Shape analysis algorithm based on information theory. In: International Conference on Image Processing, pp. 229–232 (2003)Google Scholar
  17. 17.
    Panagiotakis, C., Argyros, A.: Parameter-free modelling of 2D shapes with ellipses. Pattern Recogn. 53, 259–275 (2016)CrossRefGoogle Scholar
  18. 18.
    Rigau, J., Feixas, M., Sbert, M.: Shape complexity based on mutual information. In: 2005 International Conference on Shape Modeling and Applications, 15–17 June 2005, Cambridge, MA, USA, pp. 357–362 (2005)Google Scholar
  19. 19.
    Schwarz, M., Wonka, P.: Practical grammar-based procedural modeling of architecture: Siggraph Asia 2015 course notes. In: SIGGRAPH Asia 2015 Courses, pp. 13:1–13:12. ACM, New York, NY (2015)Google Scholar
  20. 20.
    Sukumar, S., Page, D., Gribok, A., Koschan, A., Abidi, M.: Shape measure for identifying perceptually informative parts of 3D objects. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 679–686 (2006)Google Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Erin Chambers
    • 1
  • Tegan Emerson
    • 2
  • Cindy Grimm
    • 3
  • Kathryn Leonard
    • 4
  1. 1.Department of Computer ScienceSt Louis UniversitySt LouisUSA
  2. 2.Colorado State UniversityFort CollinsUSA
  3. 3.Oregon State UniversityCorvallisUSA
  4. 4.Occidental College Department of Computer ScienceLos AngelesUSA

Personalised recommendations