Scaffolding a Skeleton

  • Athina Panotopoulou
  • Elissa Ross
  • Kathrin Welker
  • Evelyne Hubert
  • Géraldine Morin
Part of the Association for Women in Mathematics Series book series (AWMS, volume 12)


The goal of this paper is to construct a quadrilateral mesh around a one-dimensional skeleton that is as coarse as possible, the “scaffold.” A skeleton allows one to quickly describe a shape, in particular a complex shape of high genus. The constructed scaffold is then a potential support for the surface representation: it provides a topology for the mesh, a domain for parametric representation (a quad-mesh is ideal for tensor product splines), or, together with the skeleton, a grid support on which to project an implicit surface that is naturally defined by the skeleton through convolution. We provide a constructive algorithm to derive a quad-mesh scaffold with topologically regular cross-sections (which are also quads) and no T-junctions. We show that this construction is optimal in the sense that no coarser quad-mesh with topologically regular cross-sections may be constructed. Finally, we apply an existing rotation minimization algorithm along the skeleton branches, which produces a mesh with a natural edge flow along the shape.



This work has been partly supported by the NSF DMS-1619759 grant and the French Research National Agency (ANR) program CIMI, ANR-11-LABX-0040-CIMI and the German Research Foundation (DFG) within the priority program SPP 1962 under contract number Schu804/15-1.


  1. 1.
    Adhikari, M.R.: Basic Algebraic Topology and Its Applications. Springer, Berlin (2016)CrossRefGoogle Scholar
  2. 2.
    Bærentzen, J.A., Misztal, M.K., Welnicka, K.: Converting skeletal structures to quad dominant meshes. Comput. Graph. 36(5), 555–561 (2012)CrossRefGoogle Scholar
  3. 3.
    Bærentzen, J.A., Abdrashitov, R., Singh, K.: Interactive shape modeling using a skeleton-mesh co-representation. ACM Trans. Graph. 33(4), Article 132 (2014)Google Scholar
  4. 4.
    Cani, M.-P., Hornus, S.: Subdivision curve primitives: a new solution for interactive implicit modeling. In: International Conference on Shape Modeling and Applications, pp. 82–88. IEEE Computer Society Press, Washington, D.C. (2001)Google Scholar
  5. 5.
    Farouki, R.T.: Rational rotation-minimizing frames – recent advances and open problems. Appl. Math. Comput. 272, 80–91 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Goh, W.B.: Strategies for shape matching using skeletons. Comput. Vis. Image Underst. 110(3), 326–345 (2008)CrossRefGoogle Scholar
  7. 7.
    Hitchman, M.P.: Geometry with an Introduction to Cosmic Topology. Jones and Bartlett Publishers, Burlington, MA (2009)Google Scholar
  8. 8.
    Hornus, S., Angelidis, A., Cani, M.-P.: Implicit modelling using subdivision curves. Vis. Comput. 19(2–3), 94–104 (2003)Google Scholar
  9. 9.
    Hubert, E., Cani, M.-P.: Convolution surfaces based on polygonal curve skeletons. J. Symb. Comput. 47(6), 680–699 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform design. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 409–416 (1999)Google Scholar
  11. 11.
    Ji, Z., Liu, L., Wang, Y.: B-mesh: a Modeling system for base meshes of 3D articulated shapes. Comput. Graph. Forum 29(7), 2169–2177 (2010)CrossRefGoogle Scholar
  12. 12.
    Jin, X., Tai, C.-L., Feng, J., Peng, Q.: Convolution surfaces for line skeletons with polynomial weight distributions. ACM J. Graph. Tools 6(3), 17–28 (2001)CrossRefGoogle Scholar
  13. 13.
    Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)Google Scholar
  14. 14.
    Raptis, M., Kirovski, D., Hoppe, H.: Real-time classification of dance gestures from skeleton animation. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 147–156 (2011)Google Scholar
  15. 15.
    Srinivasan, V., Akleman, E., Chen, J.: Interactive construction of multi-segment curved handles. In: Proceedings of Pacific Graphics, Beijing, China (2002)Google Scholar
  16. 16.
    Srinivasan, V., Mandal, E., Akleman, E.: Solidifying wireframes. In: Bridges: Mathematical Connections in Art, Music, and Science 2004, Banff, Alberta, Canada (2005)Google Scholar
  17. 17.
    Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: International Shape Modeling, pp. 130–139 (2003)Google Scholar
  18. 18.
    Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons: a state-of-the-art report. Comput. Graph. Forum 35, 573–597 (2016)CrossRefGoogle Scholar
  19. 19.
    Usai, F., Livesu, M., Puppo, E., Tarini, M., Scateni, R.: Extraction of the quad layout of a triangle mesh guided by its curve skeleton. ACM Trans. Graph. 35(1), Article 6 (2015)CrossRefGoogle Scholar
  20. 20.
    Wang, W., Joe, B.: Robust Computation of the rotation minimizing frame for sweep surface modeling. Comput. Aided Des. 29(5), 379–391 (1997)CrossRefGoogle Scholar
  21. 21.
    Wang, W., Juttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. 27(1), 1–18, Article 2 (2008)Google Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Athina Panotopoulou
    • 1
  • Elissa Ross
    • 2
  • Kathrin Welker
    • 3
  • Evelyne Hubert
    • 4
  • Géraldine Morin
    • 5
  1. 1.Dartmouth CollegeHanoverUSA
  2. 2.MESH Consultants Inc.Fields Institute for Research in the Mathematical SciencesTorontoCanada
  3. 3.Trier UniversityTrierGermany
  4. 4.INRIA MéditerranéeSophia AntipolisFrance
  5. 5.Toulouse Institute of Computer Science RToulouse, Garonne (Haute)France

Personalised recommendations