Advertisement

Medial Fragments for Segmentation of Articulating Objects in Images

  • Erin Chambers
  • Ellen Gasparovic
  • Kathryn Leonard
Chapter
Part of the Association for Women in Mathematics Series book series (AWMS, volume 12)

Abstract

The Blum medial axis is known to provide a useful representation of pre-segmented shapes. Very little work to date, however, has examined its usefulness for extracting objects from natural images. We propose a method for combining fragments of the medial axis, generated from the Voronoi diagram of an edge map of a natural image, into a coherent whole. Using techniques from persistent homology and graph theory, we combine image cues with geometric cues from the medial fragments to aggregate parts of the same object into a larger whole. We demonstrate our method on images containing articulating objects, with an eye to future work applying articulation-invariant measures on the medial axis for shape matching between images.

References

  1. 1.
    Bal, G., Diebold, J., Chambers, E.W., Gasparovic, E., Hu, R., Leonard, K., Shaker, M., Wenk, C.: Skeleton-based recognition of shapes in images via longest path matching. In: Research in Shape Modeling, pp. 81–99. Springer, Cham (2015)zbMATHGoogle Scholar
  2. 2.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–80. MIT Press, Cambridge, MA (1967)Google Scholar
  3. 3.
    Brandt, J.: Convergence and continuity criteria for discrete approximations of the continuous planar skeleton. CVGIP: Image Underst. 59(1), 116–124 (1994)CrossRefGoogle Scholar
  4. 4.
    Damon, J., Gasparovic, E.: Medial/skeletal linking structures for multi-region configurations. Memoirs Am. Math. Soc. (2014). http://arxiv.org/abs/1402.5517v2
  5. 5.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)Google Scholar
  6. 6.
    Gasparovic, E.: The Blum medial linking structure for multi-region analysis. Ph.D. Thesis (2012)Google Scholar
  7. 7.
    Ge, Q., Lobaton, E.: Consensus-based image segmentation via topological persistence. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 95–102 (2016)Google Scholar
  8. 8.
    Leonard, K., Morin, G., Hahmann, S., Carlier, A.: A 2D shape structure for decomposition and part similarity. In: International Conference on Pattern Recognition (2016)Google Scholar
  9. 9.
    Letscher, D., Fritts, J.: Image segmentation using topological persistence.In: Kropatsch, W.G., Kampel M., Hanbury A. (eds.) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol. 4673, pp. 587–595. Springer, Berlin (2007)Google Scholar
  10. 10.
    Liu, L., Chambers, E.W., Letscher, D., Ju, T.: Extended grassfire transform on medial axes of 2D shapes. Comput. Aided Des. 43(11), 1496–1505 (2011)CrossRefGoogle Scholar
  11. 11.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schmitt, M.: Some examples of algorithm analysis in computational geometry by means of mathematical morphological techniques. In: Proceedings of the Workshop on Geometry and Robotics, pp. 225–246. Springer, London (1989)Google Scholar
  13. 13.
    Sebastian, T.B., Kimia, B.B.: Curves vs. skeletons in object recognition. Signal Process. 85(2), 247–263 (2005)CrossRefGoogle Scholar
  14. 14.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)CrossRefGoogle Scholar
  15. 15.
    Shaked, D., Bruckstein, A.M.: Pruning medial axes. Comput. Vis. Image Underst. 69(2), 156–169 (1998)CrossRefGoogle Scholar
  16. 16.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)Google Scholar
  17. 17.
    Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2010)Google Scholar
  18. 18.
    Trinh, N.H., Kimia, B.B.: Skeleton search: category-specific object recognition and segmentation using a skeletal shape model. Int. J. Comput. Vis. 94(2), 215–240 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Erin Chambers
    • 1
  • Ellen Gasparovic
    • 2
  • Kathryn Leonard
    • 3
  1. 1.Department of Computer ScienceSt Louis UniversitySt LouisUSA
  2. 2.Department of MathematicsUnion CollegeSchenectadyUSA
  3. 3.Occidental College Department of Computer ScienceLos AngelesUSA

Personalised recommendations