Localization of Pheochromocytoma and Paraganglioma

Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

If a pheochromocytoma is clinically suspected or diagnosed, the goal of imaging is lesion localization, and there are anatomical and functional imaging modalities used for it. CT is the anatomical modality of choice to identify an adrenal lesion or the less common extra-adrenal paragangliomas, and MIBG is the most widely used functional modality. Paragangliomas are frequently intra-abdominal (Blake et al. 24:S87–99, 2004), located in the retroperitoneum near the level of the SMA origin or aortic bifurcation (organ of Zuckerkandl) (Mayo-Smith et al. 21:995–1012, 2001). However, they may be encountered anywhere from the base of the skull to the urinary bladder, as they develop in the chromaffin tissue of the sympathetic nervous system (Blake et al. 24:S87–99, 2004), and other common extra-adrenal locations include the bladder wall, other parts of the retroperitoneum, heart, mediastinum, carotid body, and glomus jugulare body. MR is an alternate anatomical imaging localization modality; however, due to the greater availability, better spatial resolution and lower cost, CT remains the preferred initial anatomical imaging modality. The functional imaging modalities include nuclear medicine exams with a variety of radiotracers, including more specific tracers being developed as the biochemical characteristics of the tumors are better understood. Functional imaging has higher specificity and has great value as a confirmatory exam, and also to evaluate the possibility of multifocal lesions in abdominal and extra-abdominal locations, as well as metastatic lesions.

Keywords

Pheochromocytoma Imaging Anatomical modalities Functional modalities CT MR MIBG 

References

  1. 1.
    Blake MA, Kalra MK, Maher MM, Sahani DV, Sweeney AT, Mueller PR, et al. Pheochromocytoma: an imaging chameleon. Radiographics Rev Publ Radiol Soc North Am Inc. 2004;24(Suppl 1):S87–99.Google Scholar
  2. 2.
    Mayo-Smith WW, Boland GW, Noto RB, Lee MJ. State-of-the-art adrenal imaging. Radiographics Rev Publ Radiol Soc North Am Inc. 2001;21(4):995–1012.Google Scholar
  3. 3.
    Choyke PL. ACR appropriateness criteria on incidentally discovered adrenal mass. J Am Coll Radiol JACR. 2006;3(7):498–504.CrossRefGoogle Scholar
  4. 4.
    Miller JC, Blake MA, Boland GW, Copeland PM, Thrall JH, Lee SI. Adrenal masses. J Am Coll Radiol JACR. 2009;6(3):206–11.CrossRefGoogle Scholar
  5. 5.
    Weber AL, Janower ML, Griscom T. Radiologic and clinical evaluation of Pheochromocytoma in children: report of 6 cases. Radiology. 1967;88(1):117–23.CrossRefGoogle Scholar
  6. 6.
    Szolar DH, Korobkin M, Reittner P, Berghold A, Bauernhofer T, Trummer H, et al. Adrenocortical carcinomas and adrenal pheochromocytomas: mass and enhancement loss evaluation at delayed contrast-enhanced CT. Radiology. 2005;234(2):479–85.CrossRefGoogle Scholar
  7. 7.
    Mukherjee JJ, Peppercorn PD, Reznek RH, Patel V, Kaltsas G, Besser M, et al. Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels. Radiology. 1997;202(1):227–31.CrossRefGoogle Scholar
  8. 8.
    McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin N Am. 2009;47(1):27–40.CrossRefGoogle Scholar
  9. 9.
    Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.CrossRefGoogle Scholar
  10. 10.
    Lee TH, Slywotzky CM, Lavelle MT, Garcia RA. Best cases from the AFIP. Radiographics Rev Publ Radiol Soc North Am Inc. 2002;22(4):935–40.Google Scholar
  11. 11.
    Adam SZ, Nikolaidis P, Horowitz JM, Gabriel H, Hammond NA, Patel T, et al. Chemical shift MR imaging of the adrenal gland: principles, pitfalls, and applications. Radiographics Rev Publ Radiol Soc North Am Inc. 2016;36(2):414–32.Google Scholar
  12. 12.
    Yoon JK, Remer EM, Herts BR. Incidental pheochromocytoma mimicking adrenal adenoma because of rapid contrast enhancement loss. AJR Am J Roentgenol. 2006;187(5):1309–11.CrossRefGoogle Scholar
  13. 13.
    Patel J, Davenport MS, Cohan RH, Caoili EM. Can established CT attenuation and washout criteria for adrenal adenoma accurately exclude pheochromocytoma? AJR Am J Roentgenol. 2013;201(1):122–7.CrossRefGoogle Scholar
  14. 14.
    Shaaban AM, Rezvani M, Tubay M, Elsayes KM, Woodward PJ, Menias CO. Fat-containing retroperitoneal lesions: imaging characteristics, localization, and differential diagnosis. Radiographics Rev Publ Radiol Soc North Am Inc. 2016;36(3):710–34.Google Scholar
  15. 15.
    Goenka AH, Shah SN, Remer EM, Berber E. Adrenal imaging: a primer for oncosurgeons. J Surg Oncol. 2012;106(5):543–8.CrossRefGoogle Scholar
  16. 16.
    Jacques AE, Sahdev A, Sandrasagara M, Goldstein R, Berney D, Rockall AG, et al. Adrenal phaeochromocytoma: correlation of MRI appearances with histology and function. Eur Radiol. 2008;18(12):2885–92.CrossRefGoogle Scholar
  17. 17.
    Al Bunni F, Deganello A, Sellars ME, Schulte KM, Al-Adnani M, Sidhu PS. Contrast-enhanced ultrasound (CEUS) appearances of an adrenal phaeochromocytoma in a child with von Hippel-Lindau disease. J Ultrasound. 2014;17(4):307–11.CrossRefGoogle Scholar
  18. 18.
    Mittendorf EA, Evans DB, Lee JE, Perrier ND. Pheochromocytoma: advances in genetics, diagnosis, localization, and treatment. Hematol Oncol Clin North Am. 2007;21(3):509–25. ixCrossRefGoogle Scholar
  19. 19.
    Blanchet EM, Martucci V, Pacak K. Pheochromocytoma and paraganglioma: current functional and future molecular imaging. Front Oncol. 2011;1:58.PubMedGoogle Scholar
  20. 20.
    Sisson JC, Frager MS, Valk TW, Gross MD, Swanson DP, Wieland DM, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med. 1981;305(1):12–7.CrossRefGoogle Scholar
  21. 21.
    Huynh TT, Pacak K, Brouwers FM, Abu-Asab MS, Worrell RA, Walther MM, et al. Different expression of catecholamine transporters in phaeochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Eur J Endocrinol. 2005;153(4):551–63.CrossRefGoogle Scholar
  22. 22.
    Shulkin BL, Shapiro B, Francis IR, Dorr R, Shen SW, Sisson JC. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med. 1986;11(12):851–4.CrossRefGoogle Scholar
  23. 23.
    Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94(12):4757–67.CrossRefGoogle Scholar
  24. 24.
    Fottner C, Helisch A, Anlauf M, Rossmann H, Musholt TJ, Kreft A, et al. 6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab. 2010;95(6):2800–10.CrossRefGoogle Scholar
  25. 25.
    Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(12):2436–46.CrossRefGoogle Scholar
  26. 26.
    de Herder WW, Lamberts SW. Somatostatin and somatostatin analogues: diagnostic and therapeutic uses. Curr Opin Oncol. 2002;14(1):53–7.CrossRefGoogle Scholar
  27. 27.
    Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology. 1999;212(1):35–41.CrossRefGoogle Scholar
  28. 28.
    Hofman MS, Hicks RJ. Moving beyond “Lumpology”: PET/CT imaging of Pheochromocytoma and Paraganglioma. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21(17):3815–7.CrossRefGoogle Scholar
  29. 29.
    Maecke HR, Hofmann M, Haberkorn U. (68)Ga-labeled peptides in tumor imaging. J Nucl Med Off Publ Soc Nucl Med. 2005;46(Suppl 1):172s–8s.Google Scholar
  30. 30.
    Schreiter NF, Brenner W, Nogami M, Buchert R, Huppertz A, Pape UF, et al. Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39(1):72–82.CrossRefGoogle Scholar
  31. 31.
    Luster M, Karges W, Zeich K, Pauls S, Verburg FA, Dralle H, et al. Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET/CT) for detecting pheochromocytoma. Eur J Nucl Med Mol Imaging. 2010;37(3):484–93.CrossRefGoogle Scholar
  32. 32.
    Treglia G, Cocciolillo F, de Waure C, Di Nardo F, Gualano MR, Castaldi P, et al. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging. 2012;39(7):1144–53.CrossRefGoogle Scholar
  33. 33.
    Mann GN, Link JM, Pham P, Pickett CA, Byrd DR, Kinahan PE, et al. [11C]metahydroxyephedrine and [18F]fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected pheochromocytoma. Ann Surg Oncol. 2006;13(2):187–97.CrossRefGoogle Scholar
  34. 34.
    Trampal C, Engler H, Juhlin C, Bergstrom M, Langstrom B. Pheochromocytomas: detection with 11C hydroxyephedrine PET. Radiology. 2004;230(2):423–8.CrossRefGoogle Scholar
  35. 35.
    Yamamoto S, Hellman P, Wassberg C, Sundin A. 11C-hydroxyephedrine positron emission tomography imaging of pheochromocytoma: a single center experience over 11 years. J Clin Endocrinol Metab. 2012;97(7):2423–32.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology, Section of Abdominal ImagingThe University of Chicago MedicineChicagoUSA
  2. 2.University of Chicago MedicineChicagoUSA

Personalised recommendations