Skip to main content

Hypoglycemia-Associated Autonomic Failure in Diabetes

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The concept of hypoglycemia-associated autonomic failure in diabetes posits that in patients with absolute endogenous insulin-deficient diabetes (type 1 diabetes or advanced type 2 diabetes), necessarily imperfect insulin replacement results in falling plasma glucose concentrations, but no decrease in insulin secretion and no increase in glucagon secretion, and, thus, recurrent episodes of hypoglycemia. Those episodes (as well as sleep or prior exercise) attenuate adrenomedullary epinephrine secretion and sympathetic neural activation in response to subsequent hypoglycemia. In the setting of absent insulin and glucagon responses, the attenuated epinephrine responses cause the clinical syndrome of defective glucose counterregulation which is associated with a 25-fold or greater increased risk of severe iatrogenic hypoglycemia during intensive glycemic therapy. The attenuated sympathetic neural responses cause the clinical syndrome of hypoglycemia unawareness, which is associated with at least a sixfold increased risk of severe iatrogenic hypoglycemia during intensive glycemic therapy. The resulting recurrent hypoglycemia further attenuates the sympathoadrenal responses to falling plasma glucose concentrations. The research findings, all in humans, that led to this concept, the current views of its pathogenesis, and a potential approach to its prevention are the topics of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cryer PE. Hypoglycemia in diabetes, pathophysiology, prevalence and prevention. 3rd ed. Alexandria: American Diabetes Association; 2016.

    Google Scholar 

  2. International Diabetes Federation. IDF Diabetes Atlas. 7th ed. Brussels: International Diabetes Federation; 2015. (http://www.diabetesatlas.org).

    Google Scholar 

  3. U. K. Hypoglycemia Study Group. Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia. 2007;50:1140–7.

    Article  Google Scholar 

  4. Juvenile Diabetes Research Foundation (JDRF) Continuous Glucose Monitoring Study Group. Prolonged nocturnal hypoglycemia is common during 12 months of continuous glucose monitor-ing in children and adults with type 1 diabetes. Diabetes Care. 2010;33:1004–8.

    Article  Google Scholar 

  5. Donnelly LA, Morris AD, Frier BM, Ellis JD, Donnan PT, Durant R, Band MM, Reekie G, Leese GP for the DARTS/MEMO Collaboration. Frequency and predictors of hypoglycaemia in type 1 and insulin-treated type 2 diabetes: a population-based study. Diabet Med. 2005;22:749–55.

    Article  CAS  Google Scholar 

  6. Hepburn DA, MacLeod KM, Pell AC, Scougal IJ, Frier BM. Frequency and symptoms of hypoglycaemia experienced by patients with type 2 diabetes treated with insulin. Diabet Med. 1993;10:231–7.

    Article  CAS  Google Scholar 

  7. Cryer PE. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes. 2014;63:2188–95.

    Article  Google Scholar 

  8. Writing Group for the DCCT/EDIC Research Group. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA. 2015;313:45–53.

    Article  Google Scholar 

  9. Cryer PE. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2013;369:362–272.

    Article  CAS  Google Scholar 

  10. Cryer PE, Santiago JV, Shah SD. Measurement of norepinephrine and epinephrine in small volumes of human plasma by a single isotope derivative method: response to the upright posture. J Clin Endocrinol Metab. 1974;39:1025–9.

    Article  CAS  Google Scholar 

  11. Shah SD, Clutter WE, Cryer PE. External and internal standards in the single isotope derivative (radioenzymatic) measurement of norepinephrine and epinephrine. J Lab Clin Med. 1985;106:624–9.

    CAS  PubMed  Google Scholar 

  12. Clutter WE, Bier DM, Shah SD, Cryer PE. Epinephrine plasma metabolic clearance rate and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest. 1980;66:94–101.

    Article  CAS  Google Scholar 

  13. Berk MA, Clutter WE, Skor DA, Shah SD, Gingerich RP, Parvin CA, Cryer PE. Ehanced glycemic responsiveness to epinephrine in insulin dependent diabetes is the result of the inability to secrete insulin. J Clin Invest. 1985;75:1842–51.

    Article  CAS  Google Scholar 

  14. Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med. 1980;303:436–44.

    Article  CAS  Google Scholar 

  15. Garber AJ, Cryer PE, Santiago JV, Haymond MW, Pagliara AS, Kipnis DM. The role of adrenergic mechanisms in the substrate and hormonal response to insulin-induced hypoglycemia in man. J Clin Invest. 1976;58:7–15.

    Article  CAS  Google Scholar 

  16. Clarke WL, Santiago JV, Thomas L, Haymond MW, Ben-Galim E, Cryer PE. Adrenergic mechanisms in recovery from hypoglycemia in man: adrenergic blockade. Am J Physiol Endocrinol Metab. 1979;236:E147–52.

    Article  CAS  Google Scholar 

  17. Gerich J, Davis L, Lorenzi M, Rizza R, Bohannon N, Karam J, Lewis S, Kaplan R, Schultz T, Cryer P. Hormonal mechanisms of recovery from hypoglycemia. Am J Physiol Endocrinol Metab. 1979;236:E380–5.

    Article  CAS  Google Scholar 

  18. Rizza RA, Cryer PE, Gerich JE. Role of glucagon, catecholamines and growth hormone in human glucose counterregulation. J Clin Invest. 1979;64:62–71.

    Article  CAS  Google Scholar 

  19. Cryer PE, Gerich JE. Glucose counterregulation, hypoglycemia and intensive therapy of diabetes mellitus. N Engl J Med. 1985;313:232–41.

    Article  CAS  Google Scholar 

  20. Towler DA, Havlin CE, Craft S, Cryer PE. Mechanisms of awareness of hypoglycemia: perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. Diabetes. 1993;42:1791–8.

    Article  CAS  Google Scholar 

  21. DeRosa MA, Cryer PE. Hypoglycemia and the sympathoadrenal system: neurogenic symptoms are largely the result of sympathetic neural rather adrenomedullary activation. Am J Physiol Endocrinol Metab. 2004;287:E32–41.

    Article  CAS  Google Scholar 

  22. White NH, Skor DA, Cryer PE, Levandoski LA Bier DM, Santiago JV. Identification of type 1 diabetic patients at increased risk for hypoglycemia during intensive therapy. N Engl J Med. 1983;308:485–91.

    Article  CAS  Google Scholar 

  23. Bolli GB, De Feo P, De Cosmo S, Perriello G, Ventura MM, Massi-Benedetti M, Santeusanio F, Gerich JE, Brunetti P. A reliable and reproducible test for adequate glucose counterregulation in type 1 diabetes mellitus. Diabetes. 1994;33:732–7.

    Article  Google Scholar 

  24. Geddes J, Schopman JE, Zammitt NN, Frier BM. Prevalence of impaired awareness of hypoglycaemia in adults with type 1 diabetes. Diabet Med. 2008;25:501–4.

    Article  CAS  Google Scholar 

  25. Ryder REJ, Owens DR, Hayes TM, Ghatei MA, Bloom SR. Unawareness of hypoglycemia and inadequate hypoglycemic counterregulation: no causal relation with diabetic autonomic neuropathy. BMJ. 1990;301:783–7.

    Article  CAS  Google Scholar 

  26. Cryer PE. Diverse causes of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2004;350:2272–9.

    Article  CAS  Google Scholar 

  27. Jones TW, Porter P, Sherwin RS, Davis EA, O’Leary P, Frazer F, Byrne G, Stick S, Tamborlane WV. Decreased epinephrine responses to hypoglycemia during sleep. N Engl J Med. 1998;338:1657–62.

    Article  CAS  Google Scholar 

  28. Banarer S, Cryer PE. Sleep-related hypoglycemia-associated autonomic failure in type 1 diabetes. Diabetes. 2003;52:1195–203.

    Article  CAS  Google Scholar 

  29. Schultes B, Jauch-Chara K, Gais S, Hallschmid M, Reiprich E, Kern W, Oltmanns KM, Peters A, Fehm HL, Born J. Defective awakening response to nocturnal hypoglycemia in patients with type 1 diabetes mellitus. PLoS Med. 2007;4:e69.

    Article  Google Scholar 

  30. Sandoval DA, Aftab Guy DL, Richardson MA, Ertl AC, Davis SN. Effects of low and moderate antecedent exercise on counterregulatory responses to subsequent hypoglycemia in type 1 diabetes. Diabetes. 2004;52:1798–806.

    Article  Google Scholar 

  31. Cade WT, Khoury N, Nelson S, Shackleford A, Semenkovich K, Krauss MJ, Arbelaez AM. Hypoglycemia during moderate intensity exercise reduces counterregulatory responses to subsequent hypoglycemia. Physiol Rep. 2016;4:e12848.

    Article  Google Scholar 

  32. Heller SR, Cryer PE. Reduced neuroendocrine and symptomatic responses to subsequent hypoglycemia after 1 episode of hypoglycemia in nondiabetic humans. Diabetes. 1991;40:223–6.

    Article  CAS  Google Scholar 

  33. Dagogo-Jack S, Rattarasarn C, Cryer PE. Reversal of hypoglycemia unawareness, but not defective glucose counterregulation, in IDDM. Diabetes. 1994;43:1426–34.

    Article  CAS  Google Scholar 

  34. Segel SA, Paramore DS, Cryer PE. Hypoglycemia-associated autonomic failure in type 2 diabetes. Diabetes. 2002;51:724–33.

    Article  CAS  Google Scholar 

  35. Arbelaez AM, Xing D, Cryer PE, Kollman C, Beck RW, Sherr J, kRuedy KJ, Tamborlane WV, Mauras N, Tsalikian E, Wilson DM, White NH for the DirecNet Study Group. Blunted glucagon but not epinephrine responses to hypoglycemia occur in youth with less than one year duration of type 1 diabetes mellitus. Pediatr Diabetes. 2014;15:127–34.

    Article  CAS  Google Scholar 

  36. Dagogo-Jack SE, Craft S, Cryer PE. Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. J Clin Invest. 1993;91:819–28.

    Article  CAS  Google Scholar 

  37. Fanelli CG, Epifano L, Rambotti AM, Pampanelli S, Di Vincenzo A, Modarelli F, Lepore M, Annibale B, Ciofetta M, Bottini P, Porcelati F, Scionti L, Santeusanio F, Brunetti P, Bolli GB. Meticulous prevention of hypoglycemia normalizes the glycemic thresholds and magnitude of most neuroendocrine responses to , symptoms of, and cognitive function during hypoglycemia in intensively treated patients with short-term IDDM. Diabetes. 1993;42:1683–9.

    Article  CAS  Google Scholar 

  38. Fanelli C, Pampanelli S, Epifano L, Rambotti AM, Di Vincenzo A, Modarelli F, Ciofetta M, Lepore M, Annibale B, Torlone E, Perriello G, De Feo P, Santeusanio F, Brunetti P, Bolli GB. Long-term recovery from unawareness, deficient counterregulation and lack of cognitive dysfunction during hypoglycaemia following institution of rational intensive therapy in IDDM. Diabetologia. 1994;37:1265–76.

    Article  CAS  Google Scholar 

  39. Cranston I, Lomas J, Maran A, Macdonald I, Amiel SA. Restoration of hypoglycaemia awareness in patients with long-duration insulin-dependent diabetes. Lancet. 1994;344:283–7.

    Article  CAS  Google Scholar 

  40. Raju B, Cryer PE. Loss of the decrement in intraislet insulin plausibly explains loss of the glucagon response to hypoglycemia in insulin-deficient diabetes. Diabetes. 2005;54:757–64.

    Article  CAS  Google Scholar 

  41. Cooperberg BA, Cryer PE. Insulin reciprocally regulates glucagon secretion in humans. Diabetes. 2010;59:2936–40.

    Article  CAS  Google Scholar 

  42. Segel SA, Fanelli CG, Dence CS, Markham J, Videen TO, Paramore DS, Powers WJ, Cryer PE. Blood-to-brain glucose transport, cerebral glucose metabolism and cerebral blood flow are not increased after hypoglycemia. Diabetes. 2001;50:1911–7.

    Article  CAS  Google Scholar 

  43. Lee JJ, Khoury N, Shackleford AM, Nelson S, Herrera H, Antenor-Dorsey JA, Semenkovich K, Shimony JS, Powers WJ, Cryer PE, Arbelaez AM. Dissociation between hormonal counterregulatory responses and cerebral glucose metabolism during hypoglycemia. In Preparation.

    Google Scholar 

  44. Teves D, Videen TO, Cryer PE, Powers WJ. Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci U S A. 2004;101:6217–21. A

    Article  CAS  Google Scholar 

  45. Arbelaez AM, Powers WJ, Videen TO, Price JL, Cryer PE. Attenuation of counterregulatory responses to recurrent hypoglycemia by active thalamic inhibition. A mechanism for hypoglycemia-associated autonomic failure. Diabetes. 2008;57:270–475.

    Article  Google Scholar 

  46. Arbelaez AM, Rutlin JR, Hershey T, Powers WJ, Videen TO, Cryer PE. Thalamic activation during slightly subphysiological glycemia in humans. Diabetes Care. 2012;35:2570–4.

    Article  Google Scholar 

  47. Ramanathan RP, Cryer PE. Adrenergic mediation of hypoglycemia-associated autonomic failure. Diabetes. 2011;60:602–6.

    Article  CAS  Google Scholar 

  48. Diem P, Redmon JB, kAbid M, Moran A, Sutherland DE, Halter JB, Robertson RP. Glucagon, catecholamine and pancreatic polypeptide secretion in type 1 diabetic recipients of pancreatic allografts. J Clin Invest. 1990;86:2008–13.

    Article  CAS  Google Scholar 

  49. Palmer JP, Henry DP, Benson JW, Johnson DG, Ensinck JW. Glucagon response to hypoglycemia in sympathectomized man. J Clin Invest. 1976;57:522–5.

    Article  CAS  Google Scholar 

  50. Sherck SM, Shiota M, Saccomando J, Cardin S, Allen EJ, Hastings JR, Neal DW, Williams PE, Cherrington AD. Pancreatic response to mild non-insulin-induced hypoglycemia does not involve extrinsic neural input. Diabetes. 2001;50:2487–96.

    Article  CAS  Google Scholar 

  51. Davis SN, Shavers C, Costa F, Mosqueda-Garcia R. Role of cortisol in the pathogenesis of deficient counterregulation after antecedent hypoglycemia in normal humans. J Clin Invest. 1996;98:680–91.

    Article  CAS  Google Scholar 

  52. Davis SN, Shavers C, Davis B, Costa F. Prevention of an increase in plasma cortisol during hypoglycemia preserves subsequent counterregulatory responses. J Clin Invest. 1997;100:429–38.

    Article  CAS  Google Scholar 

  53. Raju B, McGregor VP, Cryer PE. Cortisol elevations comparable to those that occur during hypoglycemia do not cause hypoglycemia-associated autonomic failure. Diabetes. 2003;52:2083–9.

    Article  CAS  Google Scholar 

  54. Goldberg PA, Weiss R, McCrimmon RJ, Hintz EV, Dziura JD, Sherwin RS. Antecedent hypercortisolemia is not primarily responsible for generating hypoglycemia-associated autonomic failure. Diabetes. 2006;55:1121–6.

    Article  CAS  Google Scholar 

  55. Gospin R, Tiwari A, Carey M, Tomuta N, Shamoon H, Bariely I, Hawkins M, Mbanya A. Hypoglycemia-associated autonomic failure (HAAF) is induced by opioid but not adrenergic receptor activation (abstract). Diabetes. 2016;65:A39.

    Google Scholar 

  56. de Galan BE, Rietjens SJ, Tack CJ, van der Werf SP, Sweep CGJ, Lenders JWM, Smits P. Antecedent adrenaline attenuates the responsiveness to, but not the release of, counter-regulatory hormones during subsequent hypoglycemia. J Clin Endocrinol Metab. 2003;88:5462–7.

    Article  Google Scholar 

  57. Fanelli CG, Dence CS, Markham J, Videen TO, Paramore DS, Cryer PE, Powers WJ. Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes. Diabetes. 1998;47:1444–50.

    Article  CAS  Google Scholar 

  58. Oz G, Tesfaye N, Kumar A, Declchand DK, Eberly LE, Seaquist ER. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab. 2012;32:256–63.

    Article  Google Scholar 

  59. Oz G, Moheet A, Dinuzzo M, Kumar A, Khowaja AA, Kubisizak K, Eberly LE, Seaquist ER. Cerebral glycogen in humans following acute and recurrent hypoglycemia:53. Implications for a role in hypoglycemia-associated autonomic failure (HAAF) (abstract). Diabetes. 2016;65:A105.

    Google Scholar 

  60. Wahren J, Ekberg K, Fernqvist-Forbes E, Nair S. Brain substrate utilization during acute hypo-glycemia. Diabetes. 1999;42:812–7.

    CAS  Google Scholar 

  61. Lubow JM, Pinon IG, Avogaro A, Cobelli C, Treeson DM, Mandeville KA, Tofolo G, Boyle PJ. Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine and leucine uptake are not sufficient to offset energy deficit. Am J Physiol Endocrinol Metab. 2006;290:E149–53.

    Article  CAS  Google Scholar 

  62. De Feyter HM, Mason GF, Shulman GI, Rothman DL, Petersen KF. Increased brain lactate concentrations without increased lactate oxidation during hypoglycemia in type 1 diabetic individuals. Diabetes. 2013;62:3075–80.

    Article  Google Scholar 

  63. Herzog RJ, Jiang L, Herman P, Zhao C, Sanganahalli BG, Mason GF, Hyder F, Rothman DL, Sherwin RS, Behar KL. Lactate preserves neuronal metabolism and functions following antecedent recurrent hypoglycemia. J Clin Invest. 2013;123:1988–98.

    Article  CAS  Google Scholar 

  64. Chan O, Sherwin RS. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metab. 2013;24:616–24.

    Article  CAS  Google Scholar 

  65. Chan O, Paranjape SA, Horblitt A, Zhu W, Sherwin RS. Lactate-induced release of GABA in the ventromedial hypothalamus contributes to counterregulatory failure in recurrent hypoglycemia and diabetes. Diabetes. 2013;62:4239–46.

    Article  CAS  Google Scholar 

  66. LaGamma EF, Kirtok N, Chan O, Nankova BB. Partial blockade of nicotinic acetylcholine receptors improves the counterregulatory response to hypoglycemia in recurrently hypoglycemic rats. Am J Physiol Endocrinol Metab. 2014;307:E580–8.

    Article  CAS  Google Scholar 

  67. Wiegers EC, Rooijackers HM, Tack CJ, Heerschap A, de Galan BE, van der Graaf M. Brain lactate concentration falls in response to hypoglycemia in patients with type 1 diabetes and impaired awareness of hypoglycemia. Diabetes. 2016;65:1601–5.

    Article  CAS  Google Scholar 

  68. Grissom N, Bhatnagar S. Habituation to repeated stress: get used to it. Neurobiol Learn Mem. 2009;92:215–24.

    Article  Google Scholar 

  69. Bhatnagar S, Huber R, Nowak N, Trotter P. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal response to repeated restraint. J Neuroendocrinol. 2002;14:403–10.

    Article  CAS  Google Scholar 

  70. Wiegers EC, Becker KM, Rooijackers HM, von Samson-Himmelstjerma FC, Tack CJ, Heerschap A, de Galan BE, van der Graaf M. Cerebral blood flow response to hypoglycemia is altered in patients with type 1 diabetes and impaired awareness of hypoglycemia. J Cereb Blood Flow Metab 2016; 37:1994–2001.

    Article  Google Scholar 

  71. Mangia S, Tesfaye N, De Martino F, Kumar AF, Kollasch P, Moheet AA, Eberly LE, Seaquist ER. Hypoglycemia-induced increases in thalamic cerebral blood flow are blunted in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab. 2012;32:2084–90.

    Article  CAS  Google Scholar 

  72. International Hypoglycemia Study Group. Minimizing hypoglycemia in diabetes. Diabetes Care. 2015;38:1583–91.

    Article  Google Scholar 

  73. Rao AD, Bonyhay I, Dankwa J, Baimas-George M, Kneen L, Ballatori S, Freeman R, Adler GK. Baroreflex sensitivity impairment during hypoglycemia: implications for cardiovascular control. Diabetes. 2016;65:209–15.

    CAS  PubMed  Google Scholar 

  74. Reno CM, Daphna-Iken D, Chen YS, VanderWeele J, Jethi K, Fisher SJ. Severe hypoglycemia-induced lethal cardiac arrhythmias are mediated by sympathoadrenal activation. Diabetes. 2013;62:3570–81.

    Article  CAS  Google Scholar 

  75. Reno CM, Skinner A, Malik N, Viera de Abreu A, Chen YS, Daphna-Iken D, Fisher SJ. Beta1-adrenergic receptor blockade reduces severe hypoglycemia-induced cardiac arrhythmias in nondiabetic and diabetic rats (abstract). Diabetes. 2016;65:A102.

    Google Scholar 

  76. Tsujimoto T, Sugiyama T, Noda M, Kajio H. Intensive glycemic therapy in patients with type 2 diabetes on beta-blockers. Diabetes Care. 2016;39:1818–26.

    Article  CAS  Google Scholar 

  77. Cryer PE. Mechanisms of sympathoadrenal failure and hypoglycemia in diabetes. J Clin Invest. 2006;116:1470–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was prepared by the authors without external support. Dr. Cryer has served as a consultant to Novo Nordisk A/S in recent years. Dr. Arbelaez has nothing to declare.

Many of the early studies cited were supported by grants to Dr. Cryer from the National Institutes of Health (e.g., R01 DK27085) and from the American Diabetes Association and by a general clinical research center grant (M01 RR00036) from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip E. Cryer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cryer, P.E., Arbelaez, A.M. (2018). Hypoglycemia-Associated Autonomic Failure in Diabetes. In: Landsberg, L. (eds) Pheochromocytomas, Paragangliomas and Disorders of the Sympathoadrenal System. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-77048-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77048-2_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-77047-5

  • Online ISBN: 978-3-319-77048-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics