Skip to main content

Degree Aware Triangulation of Annular Regions

  • Conference paper
  • First Online:
Information Technology - New Generations

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 738))

Abstract

Generating constrained triangulation of point sites distributed in the plane is an important problem in computational geometry. We present theoretical and experimental investigation results for generating triangulations for polygons and point sites that address node degree constraints. We characterize point sites that have almost all vertices of odd degree. We present experimental results on the node degree distribution of Delaunay triangulation of point sites generated randomly. Additionally, we present a heuristic algorithm for triangulating a given normal annular region with increased number of even degree vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algorithms and Applications (Springer-Verlag New York, Inc., Secaucus, NJ, 1997)

    Book  Google Scholar 

  2. J. O’Rourke, Art Gallery Theorems and Algorithms (Oxford University Press Inc, New York, NY, 1987)

    MATH  Google Scholar 

  3. T. Auer, M. Held, Heuristics for the generation of random polygons, in Proceedings of the 28th Canadian Conference on Computational Geometry, CCCG 2016, (Carleton University, Ottawa, 1996), pp. 38–43

    Google Scholar 

  4. W. Mulzer, G. Rote, Minimum-weight triangulation is np-hard. J. ACM 55(2), 11:1–11:29 (2008)

    Article  MathSciNet  Google Scholar 

  5. C. Pelaez, A. Ramrez-Vigueras, and J. Urrutia. Triangulations with many points of even degree, in Proceedings of the 22nd Annual Canadian Conference on Computational Geometry (2010), pp. 103–106

    Google Scholar 

  6. O. Aichholzer, T. Hackl, M. Homann, A. Pilz, G. Rote, B. Speckmann, and B. Vogtenhuber. Plane graphs with parity constraints, in Algorithms and Data Structures, 11th International Symposium, WADS 2009, Ban, Canada, August 21–23, 2009. Proceedings (2009), pp. 13–24

    Google Scholar 

  7. F. Homann, K. Kriegel, A graph-coloring result and its consequences for polygon-guarding problems. SIAM J. Discret. Math. 9(2), 210–224 (May 1996)

    Article  MathSciNet  Google Scholar 

  8. R. Gyawali, Degree Constrained Triangulation. Master’s thesis (University of Nevada, Las Vegas, 2012)

    Google Scholar 

  9. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman & Co., New York, NY, 1979)

    MATH  Google Scholar 

  10. E.M. Arkin, M. Held, J.S.B. Mitchell, S.S. Skiena, Hamiltonian triangulations for fast rendering. Vis. Comput. 12(9), 429–444 (1996)

    Article  Google Scholar 

  11. M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, T.S. Tan, Edge insertion for optimal triangulations. Discrete Comput. Geom. 10(1), 47–65 (1993)

    Article  MathSciNet  Google Scholar 

  12. T.C. Biedl, A. Lubiw, S. Mehrabi, S. Verdonschot, Rectangle of- inuence triangulations, in Proceedings of the 28th Canadian Conference on Com-putational Geometry, CCCG 2016, August 3–5, 2016, (Simon Fraser University, Vancouver, British Columbia, 2016), pp. 237–243

    Google Scholar 

  13. C. Burnikel, K. Mehlhorn, S. Schirra, On degeneracy in geometric computations, in Proceedings of the Fifth Annual ACM-SIAM Symposium on Dis-crete Algorithms, SODA '94, (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994), pp. 16–23

    MATH  Google Scholar 

  14. B. Chazelle, Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(3), 485–524 (1991)

    Article  MathSciNet  Google Scholar 

  15. S. Fortune, A sweepline algorithm for voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  Google Scholar 

  16. L.J. Guibas, D.E. Knuth, M. Sharir, Randomized incremental construction of delaunay and voronoi diagrams. Algorithmica 7(4), 381–413 (1992)

    Article  MathSciNet  Google Scholar 

  17. S.K. Ghosh, D.M. Mount, An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20(5), 888–910 (1991)

    Article  MathSciNet  Google Scholar 

  18. L. Guibas, J. Stol, Primitives for the manipulation of general subdivisions and the computations of voronoi diagrams. ACM Trans. Graph 4, 74–123 (1985)

    Article  Google Scholar 

  19. S. Hertel, K. Mehlhorn, Fast triangulation of simple polygons, in Proceedings of the 1983 International FCT-Conference on Fundamentals of Computation Theory, (Springer-Verlag, London, UK, 1983), pp. 207–218

    Google Scholar 

  20. F. Hurtado, M. Noy, The graph of triangulations of a convex polygon, in Proceedings of the Twelfth Annual Symposium on Computational Geometry, SCG ‘96, (ACM, New York, NY, 1996), pp. 407–408

    Chapter  Google Scholar 

  21. F. Hurtado, M. Noy, J. Urrutia, Flipping edges in triangulations, in Proceedings of the Twelfth Annual Symposium on Computational Geometry, SCG '96, (ACM, New York, NY, 1996), pp. 214–223

    Chapter  Google Scholar 

  22. D.V. Hutton, Fundamentals of finite element analysis, in Mcgraw-Hill Series in Mechanical Engineering, (McGraw-Hill, New York, 2004)

    Google Scholar 

  23. C.L. Lawson. Software for c1 surface interpolation, in Mathematical Software III (1977), pp. 161–194

    Google Scholar 

  24. G.H. Meisters, Polygon have ears. Am. Math. Mon. 82, 648–651 (1975)

    Article  MathSciNet  Google Scholar 

  25. D.E. Muller, F.P. Preparata, Finding the intersection of two convex polyhedra. Theor. Comput. Sci. 7, 217–236 (1978)

    Article  MathSciNet  Google Scholar 

  26. E. Osherovich, A.M. Bruckstein, All triangulations are reachable via sequences of edge-ips: an elementary proof. Comput. Aided Geom. Des. 25, 157–161 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi P. Gewali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gewali, L.P., Gurung, B. (2018). Degree Aware Triangulation of Annular Regions. In: Latifi, S. (eds) Information Technology - New Generations. Advances in Intelligent Systems and Computing, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-319-77028-4_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77028-4_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77027-7

  • Online ISBN: 978-3-319-77028-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics