A Complete Diabetes Management and Care System

  • Cláudio Augusto Silveira Lélis
  • Renan Motta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)


Diabetes has become a serious health concern. The development of highly evolved blood glucose measurement devices have led to tremendous improvements in glucose monitoring and diabetic management. Tracking and maintaining traceability between glucose measurements, insulin doses and carbohydrate intake can provide useful information to physicians, health professionals, and patients. This paper presents an information system, called GLUMIS (GLUcose Management Information System), aimed to support diabetes management activities. It encompasses a rule-based method for predicting future glucose values, a reasoner and visualization elements. Through integration with glucose measurement devices it is possible to collect historical treatment data and with REALI system insulin doses and dietary habits can be processed. Through an experimental study, quantitative and qualitative data was collected. An analysis was applied and shown that GLUMIS is feasible and capable of resulting interesting rules that can help diabetics.


Knowledge-based systems Diabetes management Glucose monitoring Decision tree Continuous domain Data visualization 


  1. 1.
    D.R. Whiting, L. Guariguata, C. Weil, J. Shaw, IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94(3), 311–321 (2011)CrossRefGoogle Scholar
  2. 2.
    L. Guariguata, D. Whiting, C. Weil, N. Unwin, The international diabetes federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res. Clin. Pract. 94(3), 322–332 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Ogurtsova, J. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. Cho, D. Cavan, J. Shaw, L. Makaroff, IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017)CrossRefGoogle Scholar
  4. 4.
    D. Aronson, Hyperglycemia and the pathobiology of diabetic complications, in Cardiovascular Diabetology: Clinical, Metabolic and Inflammatory Facets, vol. 45 (Karger Publishers, Basel, 2008), pp. 1–16CrossRefGoogle Scholar
  5. 5.
    S. Rahbar, The discovery of glycated hemoglobin: a major event in the study of nonenzymatic chemistry in biological systems. Ann. N. Y. Acad. Sci. 1043(1), 9–19 (2005)CrossRefGoogle Scholar
  6. 6.
    S.K. Vashist, Continuous glucose monitoring systems: a review. Diagnostics 3(4), 385–412 (2013)CrossRefGoogle Scholar
  7. 7.
    S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H. Luong, F.-S. Sheu, Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal. Chim. Acta 703(2), 124–136 (2011)CrossRefGoogle Scholar
  8. 8.
    S.K. Vashist, Non-invasive glucose monitoring technology in diabetes management: a review. Anal. Chim. Acta 750, 16–27 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Guillod, S. Comte-Perret, D. Monbaron, R.C. Gaillard, J. Ruiz, Nocturnal hypoglycemias in type 1 diabetic patients: what we can learn with continuous glucose monitoring? Diabetes Metab. 33, 360–365 (2007)CrossRefGoogle Scholar
  10. 10.
    F. Maia, L. Araujo, Effect of continuous glucose monitoring system (CGMS) to detect postprandial hyperglycemia and unrecognized hypoglycemia in type 1 diabetic patients. Diabetes Res. Clin. Pract. 75, 30–34 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Vazeou, Continuous blood glucose monitoring in diabetes treatment. Diabetes Res. Clin. Pract. 93, S125–S130 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Sola-Gazagnes, C. Vigeral, Emergent technologies applied to diabetes: What do we need to integrate continuous glucose monitoring into daily practice? Where the long-term use of continuous glucose monitoring stands in 2011. Diabetes Metab. 37, S65–S70 (2011)CrossRefGoogle Scholar
  13. 13.
    E.G. Moser, A.A. Morris, S.K. Garg, Emerging diabetes therapies and technologies. Diabetes Res. Clin. Pract. 97(1), 16–26 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Bondia, C. Tarín, W. García-Gabin, E. Esteve, J.M. Fernández-Real, W. Ricart, J. Vehí, Using support vector machines to detect therapeutically incorrect measurements by the MiniMed CGMS®. J. Diabetes Sci. Technol. 2(4), 622–629 (2008)CrossRefGoogle Scholar
  15. 15.
    K.S. Eljil, G. Qadah, M. Pasquier, Predicting hypoglycemia in diabetic patients using data mining techniques, in 2013 9th International Conference on Innovations in Information Technology (IIT) (IEEE, 2013), pp. 130–135Google Scholar
  16. 16.
    G. Carpenter, S. Grossberg, D. Rosen, Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw. 4, 759, 771 (1991)Google Scholar
  17. 17.
    R. Xu, G. Anagnostopoulos, D. Wunsch, Multiclass cancer classification using semisupervised ellipsoid artmap and particle swarm optimization with gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 65–77 (2007)CrossRefGoogle Scholar
  18. 18.
    C.A. Lélis, M.A. Miguel, M.A.P. Araújo, J.M.N. David, R. Braga, AD-reputation: a reputation-based approach to support effort estimation, in Information Technology-New Generations (Springer, Berlin, 2018), pp. 621–626Google Scholar
  19. 19.
    V.R. Basili, D.M. Weiss, A methodology for collecting valid software engineering data. IEEE Trans. Softw. Eng. SE-10(6), 728–738 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cláudio Augusto Silveira Lélis
    • 1
  • Renan Motta
    • 2
  1. 1.Scientific Initiation Program, IMES/Faculty ImesMercosurJuiz de ForaBrazil
  2. 2.Universidade Federal de Juiz de Fora (PGCC/UFJF)Juiz de ForaBrazil

Personalised recommendations