Advertisement

Solar-Powered UAV Platform System: A Case Study for Ground Change Detection in BRIC Countries

  • Alexandre C. B. Ramos
  • Elcio H. Shiguemori
  • Sergey Serokhvostov
  • P. K. Gupta
  • Lunlong Zhong
  • Xiao Bing Hu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)

Abstract

This paper aims to present some applications in Geospatial Technology area, from the use of UAV, Communication, IT and High Performance Computing tools. Important research topics in this area are the detection of changes in multiple images of a soil region to security, deforestation identification and changes in plantations, river courses, shorelines and glaciers. Students, teachers and researchers from four BRIC countries: Brazil, Russia, India and China are conducting joint research in low-cost systems involving aircraft powered by solar energy (Russian team), communication systems over long distances (Chinese team), change detection algorithms in the soil (Brazilian team) and cloud based distributed systems for identification of the type of change detected (Indian team). Some intermediate results already achieved individually by each team are also presented and discussed in this study.

Keywords

Change detection Solar powered airplanes Cloud based systems 

Notes

Acknowledgement

Prof. Ramos acknowledges the support by National Council for Scientific and Technological Development-CNPq under award number 301263/2016-7.

References

  1. 1.
    S. Serokhvostov, T.E. Churkina, Optimization of the trajectory and accumulator mass for the solar-powered airplane, in Proc. of 3rd. Congress of the International Council of the Aeronautical Sciences (ICA, Daejeon, Korea, 2016)Google Scholar
  2. 2.
    S. Serokhvostov, T.E. Churkina, Optimal control for the sun-powered airplane with taking into account efficiency of on-board accumulator charging discharging and chage limits, in Proc. of 6th. European conference for Aeronautics and Space Sciences (EUCASS, kraków, Poland, 2015)Google Scholar
  3. 3.
    S. Serokhvostov, T.E. Churkina, Estimation of main parameters for solar-powered long endurance airplane at preliminary design stage, in Proc. of European Conf. Aeronautics and Space Sciences (EUCASS, Munich, Germany, 2013)Google Scholar
  4. 4.
    S. Serokhvostov, Optimization of flight regime and performance for the aircraft with electrical powerplant for flight on the fixed distance with the wind presence, in Polish Society of Theoretical and Applied Mechanics. Scientific aspects of unmanned aerial vehicle (Poland, 2015)Google Scholar
  5. 5.
    F. Felizardo Luiz, R.L.M. Mota, E.H. Shiguemori, M.T. Neves, A.C.B. Ramos, Embedding ANN in UAV for surveillance a case study for urban areas observation. JIAS 9, 1 (2014)CrossRefGoogle Scholar
  6. 6.
    L.F. Felizardo, R.L. Mota, E.H. Shiguemori, M.T. Neves, A.B. Ramos, F. Mora-Camino . Using ANN and UAV for terrain surveillance, in Proc. of 2013 13th International Conference on Hybrid Intelligent Systems (HIS2013), vol. 1 (Gammarth, 2013), p. 1Google Scholar
  7. 7.
    R.L.M. Mota, L.F. Felzardo, E.H. Shguemori, A.B. Ramos, F. Mora-Camino, Expanding small UAV capabilities with ANN: a case study for urban areas observation, in 2013 IEEE Second International Conference on Image Information Processing (ICIIP) (India, 2013), p. 516Google Scholar
  8. 8.
    R.L. Mota, L.F. Felizardo, E.H. Shiguemori, A.C.B. Ramos, F. Mora-Camino, Expanding small UAV capabilities with ANN: a case study for urban areas inspection. Br. J. Appl. Sci. Technol. 4, 387–398 (2014)CrossRefGoogle Scholar
  9. 9.
    Santos, M.D.M., Mota, R.L.M., Shiguemori, E.H., Ramos, A.C.B., Uso de mapas auto-organizáveis de Kohonen na detecção automática de mudanças na Represa de Paraibuna, in XVII Simpósio Brasileiro de Sensoriamento Remoto—SBSR, vol. 1 (João Pessoa, 2015). pp. 7169-7176Google Scholar
  10. 10.
    R.L.M. Mota, E.H. Shiguemori, A.C.B. Ramos, Application of self-organizing maps at change detection in Amazon forest, in 2014 Eleventh International Conference on Information Technology: New Generations (ITNG) (Las Vegas, 2014), pp. 371–376Google Scholar
  11. 11.
    L. Zhong, A.C.B. Ramos, F. Mora-Camino, A two stages approach for fault tolerant control, in 2014 33rd Chinese Control Conference CCC2014 (Nanjing, China, 2014) Google Scholar
  12. 12.
    S.S. Cunha, M.S. de Sousa, D.P. Roque, A.C.B. Ramos, P. Fernandes, Dynamic simulation of the flight behavior of a rotary-wing aircraft, in Advances in Intelligent Systems and Computing, 448th edn., (Springer International Publishing, Berlin, 2016), pp. 1087–1099Google Scholar
  13. 13.
    P.K. Gupta, G. Singh, A novel human computer interaction aware algorithm to minimize energy consumption. Wireless Pers Commun 81(2), 661–683 (2015)CrossRefGoogle Scholar
  14. 14.
    P.K. Gupta, A.F. Kavishe, et al., Smart vehicle navigation sustem using hidden markov model and RFID technology. Wireless Pers Commun 90(4), 1717–1742 (2016)CrossRefGoogle Scholar
  15. 15.
    Pattanaik, V., Suran, S. Prabakaran, S., Inducing Human-like Motion in Robots,I-Care 2014, Bangalore.  https://doi.org/10.1145/2662117.2662118
  16. 16.
    T. Hu, Y. Wu, Q. Shi, X. Wang, Design and Implement of bi-channel constant modulus anti-interference VHF receiver. J. Civ. Aviat. Univ. China 33(1), 13–18 (2015)Google Scholar
  17. 17.
    T. Hu, T. Meng, Design for fast acquiring of high dynamic GPS signal based on FPGA. J. Civ. Aviat. Univ. China 31(2), 27–31 (2013)Google Scholar
  18. 18.
    L. Zhong, R. Wu, T. Hu, Q. Shi, Bi-channels Continuous Interference Suppression Method and System used in Civil Aviation Air-Ground Communication, CN201410534749.4, Chinese Patent-CP, 2013Google Scholar
  19. 19.
    R. Wu, L. Zhong, T. Hu, S. Wang, Q. Shi, Robust Bi-Channels Interference Suppression Method and System used in Civil Aviation Air-Ground Communication, CN200810052084, CP, 2012Google Scholar
  20. 20.
    R. Wu, L. Zhong, T. Hu, S. Wang, et al, Single-Channel Optimal Constant Modulus Algorithm and System used in Civil Aviation Air-Ground Communication, CN200710059767, CP, 2011Google Scholar
  21. 21.
    Q. Shi, R. Wu, L. Zhong, D. Lu, et al, Smart Antenna Adaptive Interference Suppression Method Based on LS-LMS Algorithm, CN200910069090, CP, 2012Google Scholar
  22. 22.
    R. Wu, Q. Shi, S. Wang, T. Hu, L. Zhong, A Novel Bi-Channels Constant Modulus Interference Suppression Method and System used in Civil Aviation Air-Ground Communication, CN200810052085, CP, 2011Google Scholar
  23. 23.
    D. Lu, R. Wu, Q. Shi, W. Lei, L. Zhong, Blind Adaptive GPS Interference Suppression Method Based on Code Structure, CN200910069091, CP, 2012Google Scholar
  24. 24.
    R. Wu, J. Huang, L. Zhong, T. Hu, et al, Single-Channel Signal Suppression Algorithm and System used in Civil Aviation Air-Ground Communication, CN200710057266, CP, 2010Google Scholar
  25. 25.
    R. Wu, Q. Shi, S. Wang, J. Ma, T. Hu, L. Zhong, et al, Blind Interference Suppression Method and System Used in Civil Aviation Air-Ground Communication, CN200710057267, CP, 2010Google Scholar
  26. 26.
    R. Wu, J. Ma, L. Zhong et al, Constant Modulus Interference Suppression Method and System used in Civil Aviation Air-Ground Communication, CN200710057268, CP, 2010Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexandre C. B. Ramos
    • 1
    • 2
  • Elcio H. Shiguemori
    • 1
    • 2
  • Sergey Serokhvostov
    • 3
  • P. K. Gupta
    • 4
  • Lunlong Zhong
    • 5
  • Xiao Bing Hu
    • 5
  1. 1.Federal University of ItajubáItajubáBrazil
  2. 2.Advanced Studies InstituteSão PauloBrazil
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Jaypee University of Information TechnologySolanIndia
  5. 5.Civil Aviation University of ChinaTianjinChina

Personalised recommendations