Investigating Attribute Assessment for Credit Granting on a Brazilian Retail Enterprise

  • Strauss Carvalho Cunha
  • Emanuel Mineda Carneiro
  • Lineu Fernando Stege Mialaret
  • Luiz Alberto Vieira Dias
  • Adilson Marques da Cunha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)


In this article, we investigate which features are required to enhance a credit scoring model for a Brazilian retail enterprise. In order to find attributes that can improve the performance of classifier algorithms for credit granting, a national and an international survey were carried out. A logistic regression classifier was used and the main result has improved the performance of data mining classifiers. The main contribution of this article was the verification that additional financial and behavioral data increase defaulting prediction performance on credit granting.


Credit granting Attribute assessment Classifier algorithms Logistic regression Receiver operating characteristic (ROC) 



The authors would like to thank: the Brazilian Aeronautics Institute of Technology (ITA); the Casimiro Montenegro Filho Foundation (FCMF); the Software Engineering Research Group (GPES) members; and the 2RP Net Enterprise for their infrastructure, assistance, advice, data set, and financial support for this work.


  1. 1.
    J. Abellán, G. Castellano, A comparative study on base classifiers in ensemble methods for credit scoring. Expert Syst. Appl. 73, 1–10 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Ala’raj, M.F. Abbod, A new hybrid ensemble credit scoring model based on classifiers consensus system approach. Expert Syst. Appl. 64, 36–55 (2016)CrossRefGoogle Scholar
  3. 3.
    M.C. Aniceto, Estudo comparativo entre técnicas de aprendizado de máquina para estimação de risco de crédito. Dissertação (Mestrado em Administração). Universidade de Brasília, Brasília, 2016Google Scholar
  4. 4.
    L. Delamaire, Implementing a credit risk management system based on innovative scoring techniques, Ph.D. thesis, University of Birmingham, 2012Google Scholar
  5. 5.
    J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M. Milutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Stajdohar, L. Umek, L. Zagar, J. Zbontar, M. Zitnik, B. Zupan, Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353 (2013)zbMATHGoogle Scholar
  6. 6.
    J. Han, M. Kamber, J. Pei, Data Mining - Concepts and Techniques, 3rd edn. (Morgan Kaufmann, Amsterdam, 2012)zbMATHGoogle Scholar
  7. 7.
    M. Hörkkö, The determinants of default in consumer credit market. Masters thesis, Aalto University School of Economics (2010). Retrived from
  8. 8.
    M.B. Pascual, A.M. Martínez, A.M. Alamillos, Redes bayesianas aplicadas a problemas de credit scoring. Una aplicación práctica. Cuadernos de Economía 37(104), 73–86 (2014)CrossRefGoogle Scholar
  9. 9.
    R.M. Stein, The relationship between default prediction and lending profits: Integrating ROC analysis and loan pricing. J. Bank. Finance 29, 1213–1236 (2005)CrossRefGoogle Scholar
  10. 10.
    B. Waad, B.M. Ghazi, L. Mohamed, A three-stage feature selection using quadratic programming for credit scoring. Appl. Artif. Intell. Int. J. 27, 8 (2013)Google Scholar
  11. 11.
    I. Witten, E. Frank, Data Mining Practical Machine Learning Tools and Techniques, 2nd edn. (Elsevier, Amsterdam, 2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Strauss Carvalho Cunha
    • 1
  • Emanuel Mineda Carneiro
    • 2
  • Lineu Fernando Stege Mialaret
    • 3
  • Luiz Alberto Vieira Dias
    • 2
  • Adilson Marques da Cunha
    • 2
  1. 1.Brazilian Federal Service of Data Processing - SERPROBrasiliaBrazil
  2. 2.Federal Institute of Education, Science and Technology of Sao Paulo - IFSPJacareiBrazil
  3. 3.Computer Science DepartmentBrazilian Aeronautics Institute of Technology - ITASao Jose dos CamposBrazil

Personalised recommendations