Skip to main content

The Extracellular Matrix, Growth Factors and Morphogens in Biomaterial Design and Tissue Engineering

  • Chapter
  • First Online:
Extracellular Matrix for Tissue Engineering and Biomaterials

Abstract

Cells , morphogens, growth factors , and custom scaffolds are the critical ingredients for successful tissue regeneration in which morphogens and growth factors function sequentially. Extensive studies, in vitro and in vivo, have been made to explore the mechanisms and the roles played by these molecules. As a consequence, precise, localized control over the signaling of these factors and appropriate strategy selection, depending on the tissue or organ to be repaired or regenerated, is known to permit specific management of regenerative processes. The first part of the chapter examines natural ECMs which are a set of molecules secreted by cells that provide structural and biochemical support to the surrounding cells . ECMs also perform many other functions, such as actively regulating cell function through the control of biochemical gradients, cell density, spatial organization , and ligand attachment, thus influencing various types of cell processes. Subsequently, growth factors and morphogens are examined in greater depth to clarify to what degree progress has been made into improving methodologies and functionality and, perhaps, to hint at what remains to be done for the future of tissue engineering .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katari R, Peloso A, Orlando G. Tissue engineering and regenerative medicine:semantic considerations for an evolving paradigm. Front Bioeng Biotechnol. 2015;12(2):57.

    Google Scholar 

  2. Hellman KB, Johnson PC, Bertram TA, Tawil B. Challenges in tissue engineering and regenerative medicine product commercialization: building an industry. Tissue Eng Part A. 2011;17(1–2):1–3.

    Article  PubMed  Google Scholar 

  3. Briquez PS, Hubbell JA, Martino MM. Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv Wound Care (New Rochelle). 2015;4(8):479–89.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010;31(26):6772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Labouesse M. Role of the extracellular matrix in epithelial morphogenesis: a view from C. elegans. Organogenesis. 2012;8(2):65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011;3(7).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schaefer L. Extracellular matrix molecules: endogenous danger signals as new drug targets in kidney diseases. Curr Opin Pharmacol. 2010;10(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  11. Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iozzo RV, Zoeller JJ, Nyström A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells. 2009;27(5):503–13.

    Article  CAS  PubMed  Google Scholar 

  13. Ori A, Wilkinson MC, Fernig DG. The heparanome and regulation of cell function: structures, functions and challenges. Front Biosci. 2008;1(13):4309–38.

    Article  Google Scholar 

  14. Boyd DF, Thomas PG. Towards integrating extracellular matrix and immunological pathways. Cytokine. 2017;98:79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest. 2001;108(3):349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development. 2007;134(23):4177–86.

    Article  CAS  PubMed  Google Scholar 

  17. Goldoni S, Iozzo RV. Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int J Cancer. 2008;123(11):2473–9.

    Article  CAS  PubMed  Google Scholar 

  18. Schaefer L, Iozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008;283(31):21305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brinckerhoff CE. Matrix metalloproteinases in health and disease: sculpting the human body. 1st ed. (Republic of Singapore): World Scientific Publishing Co; 2017.

    Google Scholar 

  20. Kozel BA, Ciliberto CH, Mecham RP. Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells. Matrix Biol. 2004;23(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  21. Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, Pasquali Ronchetti I. Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol. 2005;24(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  22. Trinh LA, Stainier DY. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell. 2004;6(3):371–82.

    Article  CAS  PubMed  Google Scholar 

  23. Matsui T, Raya A, Callol-Massot C, Kawakami Y, Oishi I, Rodriguez-Esteban C, Izpisúa Belmonte JC. miles-apart-mediated regulation of cell-fibronectin interaction and myocardial migration in zebrafish. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl 1):S77–82.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor-Weiner H, Schwarzbauer JE, Engler AJ. Defined extracellular matrix components are necessary for definitive endoderm induction. Stem Cells. 2013;31(10):2084–94.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol. 2007;178(1):167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861–3.

    Article  CAS  PubMed  Google Scholar 

  27. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Riederer I, Bonomo AC, Mouly V, Savino W. Laminin therapy for the promotion of muscle regeneration. FEBS Lett. 2015;589(22):3449–53.

    Article  CAS  PubMed  Google Scholar 

  29. Mosher DF, Adams JC. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol. 2012;31(3):155–61.

    Article  CAS  PubMed  Google Scholar 

  30. Sweetwyne MT, Murphy-Ullrich JE. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol. 2012;31(3):178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sahni A, Francis CW. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood. 2000;96(12):3772–8.

    CAS  PubMed  Google Scholar 

  32. Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016;30:1–12.

    Article  CAS  PubMed  Google Scholar 

  33. Hutchings H, Ortega N, Plouët J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003;17(11):1520–2.

    Article  CAS  PubMed  Google Scholar 

  34. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu J, Strawn TL, Luo M, Wang L, Li R, Ren M, Xia J, Zhang Z, Ma W, Luo T, Lawrence DA, Fay WP. Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-αVβ3 integrin cross talk. Arterioscler Thromb Vasc Biol. 2015;35(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  36. Belair DG, Le NN, Murphy WL. Design of growth factor sequestering biomaterials. Chem Commun (Camb). 2014;50(99):15651–68.

    Article  CAS  Google Scholar 

  37. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9(2):267–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res. 2005;97(11):1093–107.

    Article  CAS  PubMed  Google Scholar 

  39. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  CAS  PubMed  Google Scholar 

  40. Olsson R, Maxhuni A, Carlsson PO. Revascularization of transplanted pancreatic islets following culture with stimulators of angiogenesis. Transplantation. 2006;82(3):340–7.

    Article  CAS  PubMed  Google Scholar 

  41. Hsiong SX, Mooney DJ. Regeneration of vascularized bone. Periodontology. 2000;2006(41):109–22.

    Google Scholar 

  42. Wijelath ES, Rahman S, Namekata M, Murray J, Nishimura T, Mostafavi-Pour Z, Patel Y, Suda Y, Humphries MJ, Sobel M. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res. 2006;99(8):853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mitsi M, Hong Z, Costello CE, Nugent MA. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry. 2006;45(34):10319–28.

    Article  CAS  PubMed  Google Scholar 

  44. Mitsi M, Forsten-Williams K, Gopalakrishnan M, Nugent MA. A catalytic role of heparin within the extracellular matrix. J Biol Chem. 2008;283(50):34796–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen LL, Johansson JK, Hodges RR, Zoukhri D, Ghinelli E, Rios JD, Dartt DA. Differential effects of the EGF family of growth factors on protein secretion, MAPK activation, and intracellular calcium concentration in rat lacrimal gland. Exp Eye Res. 2005;80(3):379–89.

    Article  CAS  PubMed  Google Scholar 

  46. Eichmann A, Simons M. VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol. 2012;24(2):188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simons M. An inside view: VEGF receptor trafficking and signaling. Physiology (Bethesda). 2012;27(4):213–22.

    CAS  Google Scholar 

  48. Mettouchi A. The role of extracellular matrix in vascular branching morphogenesis. Cell Adh Migr. 2012;6(6):528–34.

    Article  Google Scholar 

  49. Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, Engen JR, Springer TA. Force interacts with macromolecular structure in activation of TGF-β. Nature. 2017;542(7639):55–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors—novel strategies bring new prospects. Biochim Biophys Acta. 2017;1864(11 Pt A):1927–1939.

    Google Scholar 

  51. Parker A, Rees C, Clarke J, Busby WH Jr, Clemmons DR. Binding of insulin-like growth factor (IGF)-binding protein-5 to smooth-muscle cell extracellular matrix is a major determinant of the cellular response to IGF-I. Mol Biol Cell. 1998;9(9):2383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23(6):824–54.

    Article  CAS  PubMed  Google Scholar 

  53. Booth BA, Boes M, Andress DL, Dake BL, Kiefer MC, Maack C, Linhardt RJ, Bar K, Caldwell EE, Weiler J, et al. IGFBP-3 and IGFBP-5 association with endothelial cells: role of C-terminal heparin binding domain. Growth Regul. 1995;5(1):1–17.

    CAS  PubMed  Google Scholar 

  54. Kuang Z, Yao S, Keizer DW, Wang CC, Bach LA, Forbes BE, Wallace JC, Norton RS. Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2). J Mol Biol. 2006;364(4):690–704.

    Article  CAS  PubMed  Google Scholar 

  55. Forbes BE, Hartfield PJ, McNeil KA, Surinya KH, Milner SJ, Cosgrove LJ, Wallace JC. Characteristics of binding of insulin-like growth factor (IGF)-I and IGF-II analogues to the type 1 IGF receptor determined by BIAcore analysis. Eur J Biochem. 2002;269(3):961–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fowlkes JL, Serra DM. Characterization of glycosaminoglycan-binding domains present in insulin-like growth factor-binding protein-3. J Biol Chem. 1996;271(25):14676–9.

    Article  CAS  PubMed  Google Scholar 

  57. Bach LA, Headey SJ, Norton RS. IGF-binding proteins–the pieces are falling into place. Trends Endocrinol Metab. 2005;16(5):228–34.

    Article  CAS  PubMed  Google Scholar 

  58. Kricker JA, Hyde CE, Van Lonkhuyzen DR, Hollier BG, Shooter GK, Leavesley DI, Herington AC, Upton Z. Mechanistic investigations into interactions between IGF-I and IGFBPs and their impact on facilitating cell migration on vitronectin. Growth Factors. 2010;28(5):359–69.

    Article  CAS  PubMed  Google Scholar 

  59. Xu J, Liao K. Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. J Biol Chem. 2004;279(34):35914–22.

    Article  CAS  PubMed  Google Scholar 

  60. Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab. 2003;14(4):176–81. Review. PubMed PMID: 12714278.

    Google Scholar 

  61. Boyd DF, Thomas PG. Towards integrating extracellular matrix and immunological pathways. Cytokine. 2017;98:79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2007;211(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  63. Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 2017.

    Google Scholar 

  64. Perea-Gil I, Prat-Vidal C, Bayes-Genis A. In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin’. Stem Cell Res. 2015;6(6):248.

    Article  CAS  Google Scholar 

  65. An M, Kwon K, Park J, Ryu DR, Shin JA, Lee Kang J, Choi JH, Park EM, Lee KE, Woo M, Kim M. Extracellular matrix-derived extracellular vesicles promote cardiomyocyte growth and electrical activity in engineered cardiac atria. Biomaterials. 2017;146:49–59.

    Article  CAS  PubMed  Google Scholar 

  66. Berardocco M, Radeghieri A, Busatto S, Gallorini M, Raggi C, Gissi C, D’Agnano I, Bergese P, Felsani A, Berardi AC. RNA-seq reveals distinctive RNA profiles of small extracellular vesicles from different human liver cancer cell lines. Oncotarget. 2017;8(47):82920–39.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Belkin AM, Zhidkova NI, Balzac F, Altruda F, Tomatis D, Maier A, Tarone G, Koteliansky VE, Burridge K. Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. J Cell Biol. 1996;132(1–2):211–26.

    Article  CAS  PubMed  Google Scholar 

  68. Kääriäinen M, Nissinen L, Kaufman S, Sonnenberg A, Järvinen M, Heino J, Kalimo H. Expression of alpha7beta1 integrin splicing variants during skeletal muscle regeneration. Am J Pathol. 2002;161(3):1023–31.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tarone G, Hirsch E, Brancaccio M, De Acetis M, Barberis L, Balzac F, Retta SF, Botta C, Altruda F, Silengo L. Integrin function and regulation in development. Int J Dev Biol. 2000;44(6):725–31. Review. Erratum in: Int J Dev Biol 2001 Sep;45(5–6): following 770.

    Google Scholar 

  70. Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EH, Koenderink GH. A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta. 2015;1853(11 Pt B):3043–52.

    Article  CAS  Google Scholar 

  71. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Snedeker JG, Gautieri A. The role of collagen crosslinks in ageing and diabetes—the good, the bad, and the ugly. Muscles Ligaments Tendons J. 2014;4(3):303–8.

    PubMed  PubMed Central  Google Scholar 

  74. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12.

    Article  CAS  PubMed  Google Scholar 

  75. Winograd-Katz SE, Fässler R, Geiger B, Legate KR. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol. 2014;15(4):273–88.

    Article  CAS  PubMed  Google Scholar 

  76. Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215(4):445–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Geiger B, Tokuyasu KT, Dutton AH, Singer SJ. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA. 1980;77(7):4127–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Atherton P, Stutchbury B, Jethwa D, Ballestrem C. Mechanosensitive components of integrin adhesions: role of vinculin. Exp Cell Res. 2016;343(1):21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 2016;343(1):42–53.

    Article  CAS  PubMed  Google Scholar 

  80. Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: a sensor for cell polarity, mechanical forces and tissue damage. BioEssays. 2016;38(7):644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim IG, Gil CH, Seo J, Park SJ, Subbiah R, Jung TH, Kim JS, Jeong YH, Chung HM, Lee JH, Lee MR, Moon SH, Park K. Mechanotransduction of human pluripotent stem cells cultivated on tunable cell-derived extracellular matrix. Biomaterials. 2018;150:100–11.

    Article  CAS  PubMed  Google Scholar 

  82. Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013;24(5):830–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lubarsky B, Krasnow MA. Tube morphogenesis: making and shaping biological tubes. Cell. 2003;112(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  84. Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, Larsen M. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development. 2002;129(24):5767–78.

    Article  CAS  PubMed  Google Scholar 

  85. Nam JM, Onodera Y, Bissell MJ, Park CC. Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Res. 2010;70(13):5238–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, Frame MC. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol. 2002;4(8):632–8.

    Article  CAS  PubMed  Google Scholar 

  87. Weber GF, Bjerke MA, DeSimone DW. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell. 2012;22(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  88. Huveneers S, Danen EH. Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci. 2009;122(Pt 8):1059–69.

    Article  CAS  PubMed  Google Scholar 

  89. Watanabe T, Sato K, Kaibuchi K. Cadherin-mediated intercellular adhesion and signaling cascades involving small GTPases. Cold Spring Harb Perspect Biol. 2009;1(3):a003020.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 2002;16(9):1032–54.

    Article  PubMed  CAS  Google Scholar 

  91. Reddi AH. Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration. Ann Rheum Dis. 2003;62(Suppl 2):ii73–8.

    Article  Google Scholar 

  92. Bondow BJ, Faber ML, Wojta KJ, Walker EM, Battle MA. E-cadherin is required for intestinal morphogenesis in the mouse. Dev Biol. 2012;371(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Iruela-Arispe ML, Beitel GJ. Tubulogenesis. Development. 2013;140(14):2851–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lampugnani MG. Endothelial adherens junctions and the actin cytoskeleton: an ‘infinity net’? J Biol. 2010;9(3):16.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brinkmann BF, Steinbacher T, Hartmann C, Kummer D, Pajonczyk D, Mirzapourshafiyi F, Nakayama M, Weide T, Gerke V, Ebnet K. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation. Mol Biol Cell. 2016;27(18):2811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gebala V, Collins R, Geudens I, Phng LK, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol. 2016;18(4):443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci USA. 2014;111(22):7968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barry AK, Wang N, Leckband DE. Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci. 2015;128(7):1341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol. 2017;216(3):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3.

    Article  CAS  PubMed  Google Scholar 

  101. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999;126(12):2739–50.

    CAS  PubMed  Google Scholar 

  102. De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.

    PubMed  Google Scholar 

  103. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  104. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. BioEssays. 2006;28(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  105. Djouad F, Delorme B, Maurice M, Bony C, Apparailly F, Louis-Plence P, Canovas F, Charbord P, Noël D, Jorgensen C. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res Ther. 2007;9(2):R33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lu P, Werb Z. Patterning mechanisms of branched organs. Science. 2008;322(5907):1506–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Affolter M, Zeller R, Caussinus E. Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol. 2009;10(12):831–42.

    Article  CAS  PubMed  Google Scholar 

  108. Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18(5):698–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blake J, Rosenblum ND. Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol. 2014;36:2–12.

    Article  PubMed  Google Scholar 

  110. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.

    Article  CAS  PubMed  Google Scholar 

  111. Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21(5):687–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hankenson KD, Gagne K, Shaughnessy M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev. 2015;1(94):3–12.

    Article  CAS  Google Scholar 

  113. Marti-Figueroa CR, Ashton RS. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomater. 2017;54:35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Webb DJ, Roadcap DW, Dhakephalkar A, Gonias SL. A 16-amino acid peptide from human alpha2-macroglobulin binds transforming growth factor-beta and platelet-derived growth factor-BB. Protein Sci. 2000;9(10):1986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortázar I, Bustos M, Peñuelas I, Blanco G, Rodríguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J, Borrás-Cuesta F. A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine. 2003;22(1–2):12–20. Erratum in: Cytokine. 2006;33(2):119.

    Google Scholar 

  116. Serratì S, Margheri F, Pucci M, Cantelmo AR, Cammarota R, Dotor J, Borràs-Cuesta F, Fibbi G, Albini A, Del Rosso M. TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem Pharmacol. 2009;77(5):813–25.

    Article  PubMed  CAS  Google Scholar 

  117. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci USA. 2013;110(12):4563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Terada T, Mizobata M, Kawakami S, Yabe Y, Yamashita F, Hashida M. Basic fibroblast growth factor-binding peptide as a novel targeting ligand of drug carrier to tumor cells. J Drug Target. 2006;14(8):536–45.

    Article  CAS  PubMed  Google Scholar 

  119. Modaresifar K, Hadjizadeh A, Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif Cells Nanomed Biotechnol. 2017;24:1–10.

    Article  CAS  Google Scholar 

  120. Berkovitch Y, Cohen T, Peled E, Schmidhammer R, Florian H, Teuschl A, Wolbank S, Yelin D, Redl H, Seliktar D. Hydrogel composition and laser micro-patterning to regulate sciatic nerve regeneration. J Tissue Eng Regen Med. 2017.

    Google Scholar 

  121. Paduano F, Marrelli M, Alom N, Amer M, White LJ, Shakesheff KM, Tatullo M. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed. 2017;28(8):730–48.

    Article  CAS  PubMed  Google Scholar 

  122. Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10(9):1886–90.

    Article  CAS  PubMed  Google Scholar 

  123. Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O’Brien TD. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med. 2016;5(7):970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ranga A, Girgin M, Meinhardt A, Eberle D, Caiazzo M, Tanaka EM, Lutolf MP. Neural tube morphogenesis in synthetic 3D microenvironments. Proc Natl Acad Sci USA. 2016;113(44):E6831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Boccardo S, Gaudiello E, Melly L, Cerino G, Ricci D, Martin I, Eckstein F, Banfi A, Marsano A. Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomater. 2016;15(42):127–35.

    Article  CAS  Google Scholar 

  126. Lorentz KM, Yang L, Frey P, Hubbell JA. Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials. 2012;33(2):494–503.

    Article  CAS  PubMed  Google Scholar 

  127. Miller RE, Grodzinsky AJ, Cummings K, Plaas AH, Cole AA, Lee RT, Patwari P. Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum. 2010;62(12):3686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun W, Lin H, Chen B, Zhao W, Zhao Y, Xiao Z, Dai J. Collagen scaffolds loaded with collagen-binding NGF-beta accelerate ulcer healing. J Biomed Mater Res A. 2010;92(3):887–95.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna C. Berardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bason, C., Gallorini, M., Berardi, A.C. (2018). The Extracellular Matrix, Growth Factors and Morphogens in Biomaterial Design and Tissue Engineering. In: Berardi, A. (eds) Extracellular Matrix for Tissue Engineering and Biomaterials. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-77023-9_1

Download citation

Publish with us

Policies and ethics