Skip to main content

Path Coupling for Curie-Weiss Model

  • Chapter
  • First Online:
  • 545 Accesses

Abstract

In Chapters 57, we describe the method of aggregate path coupling for one and higher dimensional models. As previously discussed, the aggregate path coupling method was initially derived to prove rapid mixing for models that exhibit first-order phase transitions. To help put the aggregate path coupling method in context, we begin in this chapter with an illustration of application of the standard path coupling to the Curie-Weiss model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Aldous, J. Fill, Reversible Markov chains and random walks on graphs, in Unfinished Monograph (2002). Available at https://www.stat.berkeley.edu/~aldous/RWG/book.pdf

  2. N. Bhatnagar, D. Randall, Torpid mixing of simulated tempering on the Potts model, in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 478–487 (2004)

    Google Scholar 

  3. M. Blume, Theory of the first-order magnetic phase change in UO2. Phys. Rev. 141, 517–524 (1966)

    Article  Google Scholar 

  4. M. Blume, V. J. Emery, R.B. Griffiths, Ising model for the λ transition and phase separation in He3-He4 mixtures. Phys. Rev. A 4, 1071–1077 (1971)

    Article  Google Scholar 

  5. M.  Bordewich, M.E.  Dyer, Path coupling without contraction. J. Discrete Algorithms 5(2), 280–292 (2007)

    Article  MathSciNet  Google Scholar 

  6. P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Texts in Applied Mathematics, vol. 31 (Springer, New York, 1999)

    Chapter  Google Scholar 

  7. R.  Bubley, M.E.  Dyer, Path coupling: a technique for proving rapid mixing in Markov chains, in Proceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 223–231 (1997)

    Google Scholar 

  8. H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966–988 (1966)

    Article  Google Scholar 

  9. H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting II. Physica 33, 295–331 (1967)

    Article  Google Scholar 

  10. H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting III. Physica 37, 423–441 (1967)

    Article  Google Scholar 

  11. F. Collet, Macroscopic limit of a bipartite Curie-Weiss model: a dynamical approach. J. Stat. Phys. 157(6), 1301–1319 (2014)

    Article  MathSciNet  Google Scholar 

  12. M. Costeniuc, R.S. Ellis, H. Touchette, Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. J. Math. Phys. 46, 063301 (2005)

    Article  MathSciNet  Google Scholar 

  13. P. Cuff, J. Ding, O. Louidor, E. Lubetzy, Y. Peres, A. Sly, Glauber dynamics for the mean-field Potts model. J. Stat. Phys. 149(3), 432–477 (2012)

    Article  MathSciNet  Google Scholar 

  14. A. Dembo, O. Zeitouni, Large deviations techniques and applications, 2nd edn. (Springer, New York, 1998)

    Book  Google Scholar 

  15. F. den Hollander, Probability Theory: The Coupling Method. Lectures Notes-Mathematical Institute (Leiden University, Leiden, 2012)

    Google Scholar 

  16. J. Ding, E. Lubetzky, Y. Peres, The mixing time evolution of Glauber dynamics for the mean-field Ising model. Commun. Math. Phys. 289(2), 725–764 (2009)

    Article  MathSciNet  Google Scholar 

  17. J. Ding, E. Lubetzky, Y. Peres, Censored Glauber dynamics for the mean-field Ising model. J. Stat. Phys. 137(1), 161–207 (2009)

    MathSciNet  MATH  Google Scholar 

  18. W. Doeblin, Exposé de la théorie des chaınes simples constantes de Markova un nombre fini d’états. Mathématique de l’Union Interbalkanique 2(77–105), 78–80 (1938)

    MATH  Google Scholar 

  19. M. Dyer, L.A. Goldberg, C. Greenhill, M. Jerrum, M. Mitzenmacher, An extension of path coupling and its application to the Glauber dynamics for graph colorings. SIAM J. Comput. 30(6), 1962–1975 (2001)

    Article  MathSciNet  Google Scholar 

  20. M. Ebbers, H. Knöpfel, M. Löwe, F. Vermet, Mixing times for the swapping algorithm on the Blume-Emery-Griffiths model. Random Struct. Algoritm. (2012). https://doi.org/10.1002/rsa.20461

  21. T. Eisele, R.S.  Ellis, Multiple phase transitions in the generalized Curie-Weiss model. J. Stat. Phys. 52(1/2), 161–207 (1988).

    Article  MathSciNet  Google Scholar 

  22. R.S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985). Reprinted in 2006 in Classics in Mathematics

    Google Scholar 

  23. R.S. Ellis, K. Wang, Limit theorems for the empirical vector of the Curie-Wiess-Potts model. Markov Proc. Their Appl. 35, 59–79 (1990)

    Article  Google Scholar 

  24. R.S. Ellis, K. Haven, B. Turkington, Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101(5/6), 999–1064 (2000)

    Article  MathSciNet  Google Scholar 

  25. R.S. Ellis, P.T. Otto, H. Touchette, Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model. Ann. Appl. Probab. 15, 2203–2254 (2005)

    Article  MathSciNet  Google Scholar 

  26. R.S. Ellis, J. Machta, P.T. Otto, Asymptotic behavior of the magnetization near critical and tricritical points via Ginzburg-Landau polynomials. J. Stat. Phys. 133, 101–129 (2008)

    Article  MathSciNet  Google Scholar 

  27. R.S. Ellis, J. Machta, P.T. Otto, Asymptotic behavior of the finite-size magnetization as a function of the speed of approach to criticality. Ann. Appl. Probab. 20, 2118–2161 (2010)

    Article  MathSciNet  Google Scholar 

  28. M. Fedele, F. Unguendoli, Rigorous results on the bipartite mean-field model. J. Phys. A: Math. Theor. 45(38), 385001 (2012)

    Article  MathSciNet  Google Scholar 

  29. T.P. Hayes, A. Sinclair, A general lower bound for mixing of single-site dynamics on graphs, in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pp. 511–520 (2005)

    Google Scholar 

  30. T.P.  Hayes, E.  Vigoda, Variable length path coupling. Random Struct. Algoritm. 31(3), 251–272 (2007)

    Article  MathSciNet  Google Scholar 

  31. J.C. Hernández, Y. Kovchegov, P.T. Otto, The aggregate path coupling method for the Potts model on bipartite graph. J. Math. Phys. 58, 023303 (2017)

    Article  MathSciNet  Google Scholar 

  32. G. Jaeger, Ehrenfest classification of phase transitions: introduction and evolution. Arch. Hist. Exact Sci. 53, 51–81 (1998)

    Article  MathSciNet  Google Scholar 

  33. B. Jahnel, C. Külske, E.  Rudelli, J. Wegener, Gibbsian and non-Gibbsian properties of the generalized mean-field fuzzy Potts-model. Markov Proc. Relat. Fields 20, 601–632 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Y. Kovchegov, P.T. Otto, Rapid mixing of Glauber dynamics of Gibbs ensembles via aggregate path coupling and large deviations methods. J. Stat. Phys. 161(3), 553–576 (2015)

    Article  MathSciNet  Google Scholar 

  35. Y. Kovchegov, P.T. Otto, M. Titus, Mixing times for the mean-field Blume-Capel model via aggregate path coupling. J. Stat. Phys. 144(5), 1009–1027 (2011)

    Article  MathSciNet  Google Scholar 

  36. D. Levin, Y.  Peres, E.  Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, RI, 2009)

    MATH  Google Scholar 

  37. D.A. Levin, M. Luczak, Y. Peres, Glauber dynamics of the mean-field Ising model: cut-off, critical power law, and metastability. Probab. Theory Relat. Fields 146(1), 223–265 (2010)

    Article  MathSciNet  Google Scholar 

  38. T.M. Liggett, Interacting Particle Systems (Springer, Berlin, 1985)

    Book  Google Scholar 

  39. T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Springer, Berlin, 1999)

    Book  Google Scholar 

  40. T. Lindvall, Lectures on the Coupling Method (Wiley, New York, 1992). Reprint: Dover paperback edition (2002)

    Google Scholar 

  41. M.J. Luczak, Concentration of measure and mixing times of Markov chains, in Proceedings of the 5th Colloquium on Mathematics and Computer Science. Discrete Mathematics and Theoretical Computer Science, pp. 95–120 (2008)

    Google Scholar 

  42. R.V. Solé, Phase Transitions (Princeton University Press, Princeton, NJ, 2011)

    MATH  Google Scholar 

  43. S.R.S. Varadhan, Asymptotic properties and differential equations. Commun. Pure Appl. Math. 19, 261–286 (1966)

    Article  Google Scholar 

  44. F.Y. Wu, The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovchegov, Y., Otto, P.T. (2018). Path Coupling for Curie-Weiss Model. In: Path Coupling and Aggregate Path Coupling. SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-77019-2_4

Download citation

Publish with us

Policies and ethics