Modeling the Microstructure Evolutions of NiTi Thin Film During Tension

  • S. E. EsfahaniEmail author
  • I. Ghamarian
  • V. I. Levitas
  • P. C. Collins
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


A microscale phase field model for the multivariant martensitic phase transformation is advanced and utilized for studying the pseudoelastic behavior of a thin film of equiatomic single crystal NiTi under tensile loading. The thermomechanical model includes the strain softening as a mechanism leading to strain (transformation) localization and discrete microstructure formation. To avoid a small scale limitation, gradient term is dropped. Numerical solutions have shown a negligible mesh sensitivity for different element shapes and densities, which is due to rate-dependent kinetic equations for phase transformation. Microstructure evolution and corresponding stress-strain curves are presented for several cases. Obtained stress-strain curves, band-like martensitic microstructure, a sudden drop in the stress at the beginning of the martensitic transformation, residual austenite, and multiple stress oscillations due to nucleation events are qualitatively similar to those in known experiments.


Martensitic phase transition NiTi Localization Single crystal 



The support of NSF (CMMI-1536925 and DMR-1434613), ARO (W911NF-17-1-0225), XSEDE (TG-MSS140033), and ISU (Schafer 2050 Challenge Professorship and Vance Coffman Faculty Chair Professorship) is gratefully acknowledged.


  1. 1.
    Lagoudas DC (2008) Shape memory alloys. Science and Business Media LLCGoogle Scholar
  2. 2.
    Shaw JA, Kyriakides S (1997) Int J Plast 3:837–871CrossRefGoogle Scholar
  3. 3.
    He YJ, Sun QP (2010) Int J Mech Sci 52:1198–1211CrossRefGoogle Scholar
  4. 4.
    Duval A, Haboussi M, Zineb TB (2011) Int J Solids Struct 48:1879–1893CrossRefGoogle Scholar
  5. 5.
    Iadicola MA, Shaw JA (2004) Int J Plast 20:577–605CrossRefGoogle Scholar
  6. 6.
    Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) Int J Plast 26:976–991CrossRefGoogle Scholar
  7. 7.
    Panico M, Brinson LC (2007) J Mech Phys Solids 55:2491–2511CrossRefGoogle Scholar
  8. 8.
    Zhang X, Feng P, He Y, Yu T, Sun Q (2010) Int J Mech Sci 52:1660–1670CrossRefGoogle Scholar
  9. 9.
    Idesman AV, Levitas VI, Preston DL, Cho J-Y (2005) J Mech Phys Solids 53:495–523CrossRefGoogle Scholar
  10. 10.
    Levitas VI, Idesman AV, Preston DL (2004) Phys Rev Lett 93:105701CrossRefGoogle Scholar
  11. 11.
    Levitas VI, Lee DW (2007) Phys Rev Lett 99:245701CrossRefGoogle Scholar
  12. 12.
    Idesman AV, Cho J-Y, Levitas VI (2008) Appl Phys Lett 93:0431028CrossRefGoogle Scholar
  13. 13.
    Levitas VI (2013) Int J Plast 49:85–118CrossRefGoogle Scholar
  14. 14.
    Bhattacharyya K (2003) Microstructure of martensite. Oxford Series on Materials Modeling OUP, OxfordGoogle Scholar
  15. 15.
    Ford DS, White SR (1996) Acta Mater 44:2295–2307CrossRefGoogle Scholar
  16. 16.
    Thomasova M, Seiner H, Sedlak P, Frost M, Sevcik M, Szurman I, Kocich R, Drahokoupil J, Sittner P, Landa M (2017) Acta Mater 123:146–156CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • S. E. Esfahani
    • 1
    Email author
  • I. Ghamarian
    • 2
  • V. I. Levitas
    • 3
  • P. C. Collins
    • 4
  1. 1.Department of Aerospace EngineeringIowa State UniversityAmesUSA
  2. 2.Department of Materials Science & EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Departments of Aerospace Engineering, Mechanical Engineering, and Material Science & EngineeringIowa State UniversityAmesUSA
  4. 4.Department of Materials Science & EngineeringIowa State UniversityAmesUSA

Personalised recommendations