Multiphase Microstructure and Extended Martensitic Phase Transformation in Directionally Solidified and Heat Treated Ni44Co6Mn39Sn11 Metamagnetic Shape Memory Alloy

  • P. Czaja
  • R. Chulist
  • M. Szlezynger
  • M. Fitta
  • W. Maziarz
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Directionally solidified Ni–Co–Mn–Sn alloy shows a multiphase solidification microstructure relatable primarily to the varying Co–Mn/Sn ratio. Thermal treatment at 1220 K lasting for 72 h encourages chemical homogeneity with average stoichiometry of Ni45.1Co6.2Mn37.2Sn11.5. At room temperature, despite the chemical uniformity, the as-homogenized alloy shows a multiphase microstructure with coexisting L21 austenite and 6M and 4O martensite phases. The martensite phase preferentially locates at grain boundaries. The onset of the martensitic transition temperature is estimated at 402 K, which overlaps with the Curie transition of austenite. The martensitic transition appears to initially take place at the grain boundaries and then it extends to low temperature as the volume of the grains transforms to martensite.


Martensite Microstructure SEM TEM 



The authors would like to gratefully acknowledge financial support from the Polish National Science Centre for Research and Development (Project number: PBS/A5/36/2013).


  1. 1.
    Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O, Kanomata T (2006) Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl Phys Lett 88:192513-1-3Google Scholar
  2. 2.
    Krenke T, Duman E, Acet M, Moya X, Manosa L, Planes A (2007) Effect of Co and Fe on the inverse magnetocaloric properties of Ni–Mn–Sn. J Appl Phys 102:033903CrossRefGoogle Scholar
  3. 3.
    Bruno NM, Yegin C, Karaman I, Chen J-H, Ross JH Jr, Liu J, Li J (2014) The effect of heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic refrigeration. Acta Mater 74:66–84CrossRefGoogle Scholar
  4. 4.
    Cong DY, Roth S, Liu J, Luo Q, Potschke M, Hurrich C, Schultz L (2010) Superparamagnetic and superspin glass behaviors in the martensitic state of Ni43.5Co6.5Mn39Sn11 magnetic shape memory alloy. Appl Phys Lett 96:112504-1-3Google Scholar
  5. 5.
    Umetsu RY, Ito K, Ito W, Koyama K, Kanomata T, Ishida K, Kainuma R (2011) Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy. J Alloys Compd 509:1389–1393CrossRefGoogle Scholar
  6. 6.
    Srivastava V, Chen X, James RD (2010) Hysteresis and unusual magnetic properties in the singular Heusler alloy Ni45Co5Mn40Sn10. Appl Phys Lett 97:014101-1-3Google Scholar
  7. 7.
    Khovalyo V, Koledov V, Shavrov V, Ohtsuka M, Miki H, Takagi T, Novosad V (2008) Influence of cobalt on phase transitions in Ni50Mn37Sn13. Mater Sci Eng A 481–482:322–325CrossRefGoogle Scholar
  8. 8.
    Ito W, Xu X, Umetsu RY, Kanomata T, Ishida K, Kainuma R (2010) Concentration dependance of magnetic moment in Ni50-xCoxMn50-yZy (Z = In, Sn) Heusler alloys. Appl Phys Lett 97:242512-1-3Google Scholar
  9. 9.
    Perez-Sierra AM, Pons J, Santamarta R, Vermaut P, Ochin P (2015) Solidification process and effect of thermal treatments on Ni–Co–Mn–Sn metamagnetic shape memory alloys. Acta Mater 93:164–174CrossRefGoogle Scholar
  10. 10.
    Wójcik A, Maziarz W, Szczerba MJ, Sikora M, Hawełek Ł, Czaja P (2016) Influence of Fe addition on the martensitic transformation, structure and magnetic properties of metamagnetic Ni–Co–Mn–Sn alloys. Acta Phys Pol A 130:1026–1028CrossRefGoogle Scholar
  11. 11.
    Czaja P, Chulist R, Szczerba MJ, Przewoźnik J, Olejnik E, Chrobak A, Maziarz W, Cesari E (2016) Magnetostructural transition and magnetocaloric effect in highly textured Ni–Mn–Sn alloy. J Appl Phys 119:165102-1-6CrossRefGoogle Scholar
  12. 12.
    Czaja P, Szczerba MJ, Chulist R, Bałanda M, Przewoźnik J, Chumlyakov YI, Schell N, Kapusta CZ, Maziarz W (2016) Acta Mater 118:213–220Google Scholar
  13. 13.
    Schlagel DL, McCallum RW, Lograsso TA (2008) Influence of solidification microstructure on the magnetic properties of Ni–Mn–Sn Heusler alloys. J Alloys Compd 463:38–46CrossRefGoogle Scholar
  14. 14.
    Passamani EC, Xavier F, Favre-Nicolin E, Larica C, Takeuchi AY, Castro IL, Proveti JR (2009) Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn. J Appl Phys 105:033919-1-8CrossRefGoogle Scholar
  15. 15.
    Segui C, Cesari E (2012) Composition and atomic order effects on the structural and magnetic transformations in ferromagnetic Ni–Co–Mn–Ga shape memory alloys. J Appl Phys 111:043914-1-7CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • P. Czaja
    • 1
  • R. Chulist
    • 1
  • M. Szlezynger
    • 1
  • M. Fitta
    • 2
  • W. Maziarz
    • 1
  1. 1.Institute of Metallurgy and Materials Science Polish Academy of SciencesKrakówPoland
  2. 2.The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakówPoland

Personalised recommendations