Strain-Induced Martensitic Transformation in a Co-Cr-W-Mo Alloy Probed by Nanoindentation

  • Irmgard WeißensteinerEmail author
  • Patrick Voigt
  • Helmut Clemens
  • Verena Maier-Kiener
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Co-Cr-W-Mo alloys have been used for dental implants for many decades. Thermomechanical processing in combination with heat treatments leads to a significant improvement of the materials properties regarding application and manufacturing. During hot isostatic pressing (HIP) of the cast prematerial, a change in the chemical composition of the constituent phases occurs, which influences the susceptibility of the metastable fcc Co matrix to strain-induced martensitic transformation (SIMT). The purpose of this study was to identify the effect of the HIP process on SIMT. The local mechanical behavior of preselected grains in {111}, {110}, and {100} orientations was analyzed by nanoindentation, and the chemical composition of the primary dendrites was studied by atom probe tomography (APT). Due to HIP, the chemical composition of the matrix slightly changed, which in turn changes the fcc → hcp transformation temperature and, connected with that, the tendency to SIMT. Further, the present study revealed a slight orientation anisotropy of the Young’s modulus in the as-cast condition and a general drop in hardness after HIP.


Co-Cr implant alloy Strain-induced martensitic transformation Nanoindentation 



The authors thank Patrick Voigt and the Hanseatische Warenhandelsgesellschaft for providing the sample material. Parts of this work were also funded by the Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsförderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme (837900, MPPE A7.19) is appreciated.


  1. 1.
    Yamanaka K, Mori M, Chiba A (2014) Mater Sci Eng C 40:127CrossRefGoogle Scholar
  2. 2.
    Narushima T, Ueda K (2015) Alfirano. Springer, Berlin, Heidelberg, pp. 157–178Google Scholar
  3. 3.
    Koizumi Y, Suzuki S, Yamanaka K, Lee B-S, Sato K, Li Y, Kurosu S, Matsumoto H, Chiba A (2013) Acta Mater 61:1648CrossRefGoogle Scholar
  4. 4.
    Yamanaka K, Mori M, Kuramoto K, Chiba A (2014) Mater Des 55:987CrossRefGoogle Scholar
  5. 5.
    Yamanaka K, Mori M, Chiba A (2014) Mater Sci Eng, A 592:173CrossRefGoogle Scholar
  6. 6.
    Remy L (1977) Metall Trans A 8:253CrossRefGoogle Scholar
  7. 7.
    Stringfellow RG, Parks DM, Olson GB (1992) Acta Metall Mater 40:1703CrossRefGoogle Scholar
  8. 8.
    Yamanaka K, Mori M, Koizumi Y, Chiba A (2014) J Mech Behav Biomed Mater 32:52CrossRefGoogle Scholar
  9. 9.
    Rémy L, Pineau A (1976) Mater Sci Eng 26:123CrossRefGoogle Scholar
  10. 10.
    Yamanaka K, Mori M, Chiba A (2014) J Mech Behav Biomed Mater 37:274CrossRefGoogle Scholar
  11. 11.
    Li YP, Yu JS, Kurosu S, Koizumi Y, Matsumoto H, Chiba A (2012) Mater Chem Phys 133:29CrossRefGoogle Scholar
  12. 12.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  13. 13.
    Hay JL, Pharr GM (2000) ASM Handb 8:232Google Scholar
  14. 14.
    Weißensteiner I, Voigt P, Maier-Kiener V, Clemens H (2016) Pract Metallogr 53:450CrossRefGoogle Scholar
  15. 15.
    Rösler J, Bäker M, Harders H (n.d.) Mechanical Behaviour of Engineering Materials, Springer, Berlin, Heidelberg, pp. 31–62Google Scholar
  16. 16.
    Vlassak JJ, Nix WD (1993) Philos Mag A 67:1045CrossRefGoogle Scholar
  17. 17.
    Li Y, Yamashita Y, Tang N, Liu B, Kurosu S, Matsumoto H, Koizumi Y, Chiba A (2012) Mater Chem Phys 135:849CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Irmgard Weißensteiner
    • 1
    Email author
  • Patrick Voigt
    • 2
  • Helmut Clemens
    • 1
  • Verena Maier-Kiener
    • 1
  1. 1.Department of Physical Metallurgy and Materials TestingMontanuniversität LeobenLeobenAustria
  2. 2.Titanium Solutions GmbHBremenGermany

Personalised recommendations