Martensitic Transformations of Ni–Mn–X Heusler Alloys with X = Ga, In and Sn

  • Peter EntelEmail author
  • Markus E. Gruner
  • Mehmet Acet
  • Asli Çahır
  • Raymundo Arroyave
  • Thien Duong
  • Anjana Talapatra
  • Ibrahim Karaman
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Martensitic transformations of rapidly quenched and less rapidly cooled Heusler alloys of type Ni–Mn–X with X = Ga, In and Sn are investigated by ab initio calculations. For the rapidly cooled alloys, we obtain the magnetocaloric properties near the magnetocaloric transition. For the less rapidly quenched alloys these magnetocaloric properties start to change considerably. This shows that none of the Heulser alloys is in thermal equilibrium. Instead, each alloy transforms during temper-annealing into a dual-phase composite alloy. The two phases are identified to be cubic Ni–Mn–X and tetragonal NiMn.


Magnetocaloric effect Heusler alloys First order phase transitions Segregation 



We acknowledge support by the DFG priority program 1599 “ferroic cooling”. Calculations were carried out on the magnitude supercomputer (DFG grant INST 20876/208-1) at the CCSS at University of Duisburg-Essen.


  1. 1.
    Liu J, Gottschall KP, Skokov KP, Moore JD, Gutfleisch O (2012) Nat Mater 11:620CrossRefGoogle Scholar
  2. 2.
    Sokolovskiy VV, Entel P, Buchelnikov VD, Gruner ME (2015) Phys Rev B 91:220409(R)CrossRefGoogle Scholar
  3. 3.
    Yuhasz WM, Schlagrel DI, Xing Q, Fennis KW, McCallum RW, Lograsso TA (2009) J Appl Phys 105:07A921CrossRefGoogle Scholar
  4. 4.
    Yuhasz WM, Schlagel DL, XCing Q, McCallum RW, Lograsso TA (2010) J Alloys Comp 492:681CrossRefGoogle Scholar
  5. 5.
    Çahr A, Acet M, Farle M (2016) Sci Rep 6:28931CrossRefGoogle Scholar
  6. 6.
    Krenke T, Çahr A, Scheibel F, Acet M, Farle M (2016) J Appl Phys 120:243904CrossRefGoogle Scholar
  7. 7.
    Çahr A, Acet M, Wiedwald U, Krenke T, Farle M (2017) Acta Mater 127:117CrossRefGoogle Scholar
  8. 8.
    Planes A, Mañosa L, Acet M (2009) J Phys Condens Matter 21:233201CrossRefGoogle Scholar
  9. 9.
    Kouvel JD, Hartelius CC (1912) J Appl Phys 32:1343Google Scholar
  10. 10.
    Nikitin SA, Myalikgulyev G, Tissin AM, Annaorazov MP, Asatryan KA, Tyurin AL (1990) Phys Lett 148:363CrossRefGoogle Scholar
  11. 11.
    Chirkova A, Skokov KP, Schultz L, Baranov NV, Gutfleisch O, Woodcock T (2016) Acta Mat 106:15CrossRefGoogle Scholar
  12. 12.
    Wolloch M, Gruner ME, Keune W et al (2016) Phys Rev B 94:174435CrossRefGoogle Scholar
  13. 13.
    Pavlukhina O, Sokolovskiy V, Buchelnikov V, Entel P (2016) MSF 845:138CrossRefGoogle Scholar
  14. 14.
    Recarte V, Pérez-Landazábal JI, Sánchez-Alarcos V (2012) J Alloys Comp 536:S5308CrossRefGoogle Scholar
  15. 15.
    Barandiaran JM, Chernenko VA, Cesari E, Salas D, Lapzpita P, Gutierrez J, Oru I (2013) Appl Phys Lett 102:071904CrossRefGoogle Scholar
  16. 16.
    Barandiaran JM, Chernenko VA, Cesari E, Salas D, Gutierrez J, Lapzpita P (2013) J Phys Condens Matter 25:484005CrossRefGoogle Scholar
  17. 17.
    Cong DY, Roth S, Schultz L (2012) Acta Mater 60:5335CrossRefGoogle Scholar
  18. 18.
    Cesari E, Font J, Muntashell J, Ochin P, Pons J, Santamarta R (2008) Scipta Mater 58:259CrossRefGoogle Scholar
  19. 19.
    Aseguinoaza JR, Colub V, Saluk OY, Muntifering B, Knowlton WB, Müllner P, Barandiaran JM, Cernenko VA (2016) Acta Mater 111:163Google Scholar
  20. 20.
    Merida D, Garćia JA, Sánchez-Aloarca V, Perez-Landazábal JI, Recarte V, Plazola F (2015) J Alloys Comp 639:180CrossRefGoogle Scholar
  21. 21.
    Pérez-Sierra AM, Pons J, Santamarta R, Vernaut P, Ochin P (2015) Act Mater 93:164CrossRefGoogle Scholar
  22. 22.
    Ito W, Itto K, Umetsu RY, Kainuma R, Koyama K, Watanabe W, Fujita A, Okawa K, Ishida K, Kanomata T (2008) Appl Phys Lett 92:021908CrossRefGoogle Scholar
  23. 23.
    Monroe JA, Raymond JE, Xu X, Nagasako M, Kainuma R, Chumlyakov YI, Arroyave R, Karaman I (2015) Acta Mat 101:107CrossRefGoogle Scholar
  24. 24.
    Gottschall T, Skokov KP, Frincu B, Gutfleisch O (2015) Appl Phys Lett 106:021901CrossRefGoogle Scholar
  25. 25.
    Ghatak SK, Ray DK (1985) Phys Rev B 31:3064CrossRefGoogle Scholar
  26. 26.
    Miyamoto T, Ito W, Umetsu RY, Kainuma R, Kanomata T, Ishida K (2010) Scripta Mater 62:151CrossRefGoogle Scholar
  27. 27.
    Kainuma R, Geijima F, Sutou Y, Ohnuma I, Aoko K, Ishida K (2000) JIM 41:943Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Peter Entel
    • 1
    Email author
  • Markus E. Gruner
    • 1
  • Mehmet Acet
    • 1
  • Asli Çahır
    • 2
  • Raymundo Arroyave
    • 3
  • Thien Duong
    • 3
  • Anjana Talapatra
    • 3
  • Ibrahim Karaman
    • 3
  1. 1.Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Metalurji Ve Malzeme Mühendisliği BölümüMuğla ÜniversitesiMuğlaTurkey
  3. 3.Department of Materials Science & EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations