Reversed Austenite for Enhancing Ductility of Martensitic Stainless Steel

  • Sebastian DieckEmail author
  • Martin Ecke
  • Paul Rosemann
  • Thorsten Halle
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Quenching and partitioning (Q&P) heat treatment increases the deformability of high-strength martensitic steels. Therefore, it is necessary to have some metastable austenite in the microstructure, which transforms in martensite during plastic deformation (TRIP effect). The austenitic-martensitic microstructure is gained by an increased austenitization temperature, water quenching and additional partitioning. The partitioning enables local carbon diffusion, which stabilizes retained austenite and leads to partial reversion of martensite to austenite. The influence of partitioning time was studied for the martensitic stainless steel AISI 420 (X46Cr13, 1.4034). In line with these efforts, metallographic, XRD and EBSD measurements were performed to characterize the microstructural evolution. The mechanical properties were tested using tension and compression loading. Additional corrosion investigations showed the benefits of Q&P heat treatment compared to conventional tempering. The reversion of austenite by the partitioning treatment was verified with EBSD and XRD. Furthermore, the results of the mechanical and corrosion testing showed improved properties due to the Q&P heat treatment.


Reversed austenite Quenching and partitioning Stainless steel Corrosion resistance 



The authors would like to acknowledge financial support by the GKMM 1554. Further thanks to the Federal Institute of Materials Science and Testing (BAM) for corrosion testing. The authors are grateful to Mr. Sebastian Fritsch (Technical University Chemnitz) for performing the compression testing.


  1. 1.
    Dieck S, Baumann T, Hasemann G, Rannabauer S, Krüger M (2014) MagdeburgGoogle Scholar
  2. 2.
    Edmonds DV, He K, Rizzo FC, de Cooman BC, Matlock DK, Speer JG (2006) Mater Sci Eng A 438–440, S 25–34Google Scholar
  3. 3.
    Wang Li, Speer JG (2013) Metall Microstruct Anal 2:Nr 4, S 268–281Google Scholar
  4. 4.
    Speer J, Matlock DK, de Cooman BC, Schroth JG (2003) Acta Mater 51:Nr 9, S 2611–2622Google Scholar
  5. 5.
    Clarke AJ, Speer JG, Miller MK, Hackenberg RE, Edmonds DV, Matlock DK, Rizzo FC, Clarke KD, de Moor E (2008) Acta Mater 56:Nr 1, S 16–22Google Scholar
  6. 6.
    Santofimia MJ, Zhao L, Sietsma, J (2011) Metall Mater Trans A 42:Nr 12, S 3620–3626Google Scholar
  7. 7.
    Arlazarov A, Bouaziz O, Masse JP, Kegel F (2015) Mater Sci Eng A 620:S 293–300Google Scholar
  8. 8.
    Arlazarov A, Ollat M, Masse JP, Bouzat M (2016) Mater Sci Eng A 661:S 79–86Google Scholar
  9. 9.
    Dieck S, Rosemann P, Kromm A, Halle T (2017) IOP conference series: materials science and engineering, vol 181, pp S 12034Google Scholar
  10. 10.
    Yuan L, Ponge D, Wittig J, Choi P, Jiménez JA, Raabe D (2012) Acta Mater 60:6–7, S 2790–2804Google Scholar
  11. 11.
    Tsuchiyama T, Tobata J, Tao T, Nakada N, Takaki S (2012) Mater Sci Eng A 532:S 585–592Google Scholar
  12. 12.
    Burkert A, Klapper HS, Lehmann J (2013) Mater Corros 64:Nr 8, S 675–682Google Scholar
  13. 13.
    Lehmann J, Burkert A, Mietz J (2016) Mater Corros 67:Nr 1, S 84–91Google Scholar
  14. 14.
    Rosemann P (2017) 1. Auflage. Herzogenrath: Shaker (Berichte aus der Werkstofftechnik)Google Scholar
  15. 15.
    Burkert A, Lehmann J, Müller T, Bohlmann T (2014) Schlussbericht AiF Forschungsvorhaben 17136 N/1Google Scholar
  16. 16.
    Lehmann J, Burkert A, Steinhoff U-M (2012) Auflage für den Nachweis von korrosionsempfindlichen Metalloberflächen und Verfahren zum Nachweis von korrosionsempfindlichen Metalloberflächen. Bundesanstalt für Materialforschung und -prüfung (BAM). Anmeldenr. 102010037775, Deutschland. 29.03.2012. Deutschland. Veröffentlichungsnr. 102010037775. IPC G01 N 17/00Google Scholar
  17. 17.
    Lei Y (2012) Aachen: Shaker (Berichte aus der Materialwissenschaft)Google Scholar
  18. 18.
    Bridgman PW (1964) s.l.: Harvard University PressGoogle Scholar
  19. 19.
    Singh AP, Padmanabhan KA, Pandey GN, Murty GMD, Jha S (2000) J Mater Sci 35:Nr 6, S 1379–1388Google Scholar
  20. 20.
    Rauch GC, Leslie WC (1972) Metall Mater Trans B 3:Nr 2, S 377–389Google Scholar
  21. 21.
    Ellermann A, Scholtes B (2015) Mater Sci Eng A 620:S 262–272Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Sebastian Dieck
    • 1
    Email author
  • Martin Ecke
    • 1
  • Paul Rosemann
    • 1
    • 2
  • Thorsten Halle
    • 1
  1. 1.Otto-von-Guericke-University Magdeburg, Institute of Materials and Joining TechnologyMagdeburgGermany
  2. 2.Department 7.6 Corrosion and Corrosion ProtectionBAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations