Advertisement

Influence of Grain Size on Work-Hardening Behavior of Fe-24Ni-0.3C Metastable Austenitic Steel

  • W. Q. Mao
  • S. Gao
  • W. Gong
  • M. H. Park
  • Y. Bai
  • A. Shibata
  • N. Tsuji
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In this study, the effect of grain size on the work-hardening behavior of Fe-24Ni-0.3C metastable austenitic steel was investigated by the use of in situ neutron diffraction during tensile tests in Japan Proton Accelerator Research Complex (J-PARC). The effect of grain size on the work-hardening behavior was considered from viewpoints of martensite formation and stress partitioning between different phases. The result revealed that when the grain size changed within the coarse grained region the influence of the grain size on the stress partitioning was relatively small, thus the work-hardening behavior was mainly determined by the increasing rate of martensite volume fraction. On the other hand, when the grain size decreased down to ultrafine grained scale, the internal stress (phase stress) in martensite significantly increased, which contributed to the increasing work-hardening rate.

Keywords

Deformation induced martensite Metastable austenitic steel Neutron diffraction Work-hardening behavior Grain size 

Notes

Acknowledgements

The neutron experiment at the Materials and Life Science Experimental Facility of the J-PARC was performed under a user program (Proposal No. 2016E0003 and 2017A0136). This work was financially supported by the Elements Strategy Initiative for Structural Materials (ESISM) and the Grant-in-Aid for Scientific Research (S) (No. JP15H05767) both through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. One of the authors (W.Q.Mao) was financially supported by China Scholarship Council (CSC), China. The supports are gratefully appreciated.

References

  1. 1.
    Zackay VF, Parker ER, Fahr D et al (1967) ASM Trans Quart 60(2):252–259Google Scholar
  2. 2.
    Wakita M, Adachi Y, Tomota Y (2007) Trans Tech Publ 539:4351–4356Google Scholar
  3. 3.
    Edmonds DV, He K, Rizzo FC et al (2006) Mater Sci Eng A 438:25–34CrossRefGoogle Scholar
  4. 4.
    Speer J, Matlock DK, De Cooman BC et al (2003) Acta Mater 51(9):2611–2622CrossRefGoogle Scholar
  5. 5.
    Grässel O, Krüger L, Frommeyer G et al (2000) Int J Plast 16(10):1391–1409CrossRefGoogle Scholar
  6. 6.
    Berrenberg F, Haase C, Barrales-Mora LA et al (2017) Mater Sci Eng A 681:56–64CrossRefGoogle Scholar
  7. 7.
    Iwamoto T, Tsuta T (2000) Int J Plast 16(7):791–804CrossRefGoogle Scholar
  8. 8.
    Jacques P, Furnémont Q, Mertens A et al (2001) Philos Mag A 81(7):1789–1812CrossRefGoogle Scholar
  9. 9.
    De AK, Speer JG, Matlock DK et al (2006) Metall Mater Trans A 37(6):1875–1886CrossRefGoogle Scholar
  10. 10.
    Tomota Y, Tokuda H, Adachi Y et al (2004) Acta Mater 52(20):5737–5745CrossRefGoogle Scholar
  11. 11.
    Tomota Y, Lukáš P, Neov D et al (2003) Acta Mater 51(3):805–817CrossRefGoogle Scholar
  12. 12.
    Harjo S, Tomota Y, Lukáš P et al (2001) Acta Mater 49(13):2471–2479CrossRefGoogle Scholar
  13. 13.
    Daymond MR, Bourke MAM, Von Dreele RB et al (1997) J Appl Phys 82(4):1554–1562CrossRefGoogle Scholar
  14. 14.
    Hutchings MT, Krawitz AD (eds) (2012) Measurement of residual and applied stress using neutron diffraction, vol 216. Springer Science & Business MediaGoogle Scholar
  15. 15.
    De AK, Murdock DC, Mataya MC et al (2004) Scr Mater 50(12):1445–1449CrossRefGoogle Scholar
  16. 16.
    Takaki S, Fukunaga K, Syarif J et al (2004) Mater Trans 45(7):2245–2251CrossRefGoogle Scholar
  17. 17.
    Chokshi AH, Rosen A, Karch J et al (1989) Scr Metall 23(10):1679–1683CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • W. Q. Mao
    • 1
  • S. Gao
    • 1
  • W. Gong
    • 2
    • 3
  • M. H. Park
    • 1
    • 2
  • Y. Bai
    • 1
    • 2
  • A. Shibata
    • 1
    • 2
  • N. Tsuji
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringKyoto UniversityKyotoJapan
  2. 2.Elements Strategy Initiative for Structural Materials (ESISM)Kyoto UniversityKyotoJapan
  3. 3.J-PARC Center, Japan Atomic Energy AgencyTokaiJapan

Personalised recommendations