Advertisement

Correlation Between Deformation Texture and Martensitic Transformation in TWIP/TRIP Steels on Multiscale

  • Marton Benke
  • Erzsebet Nagy
  • Mate Sepsi
  • Peter Pekker
  • Valeria Mertinger
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In the present manuscript, the texture variation of γ austenite, ε martensite and α′ martensite phases are investigated in FeMn (Cr) steels exhibiting both TWIP and TRIP behaviour during uniaxial tensile tests. Samples of three steels with varying Cr content were subjected to tensile tests till fracture on different temperatures ranging from room temperature, at which ε martensite and γ austenite are stable to 453 K, where only γ austenite was present prior to tensile stressing. The developed texture of ε martensite, α′ martensite and γ austenite was examined on multiscale, by TEM orientation mapping, Electron Backscattered Diffraction (EBSD) orientation mapping and X-ray-diffraction pole figure measurements. Correlations between the developed textures and the formation of the martensitic phases are discussed.

Keywords

TRIP/TWIP steels Texture Thermomechanical treatment 

Notes

Acknowledgements

The research work presented in this paper is based on the results achieved within the NKFI 119566 K project. One of the authors, Mate Sepsi, is grateful for the support of the new national excellence program of the ministry of human capacities.

References

  1. 1.
    Nishiyama Z (1978) Martensitic transformations. Academic PressGoogle Scholar
  2. 2.
    Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. Chapman & HallCrossRefGoogle Scholar
  3. 3.
    Olson GB, Owen WS (1992) Martensite. ASM InternationalGoogle Scholar
  4. 4.
    Bhadeshia HKDH, Honeycombe RWK (2006) Steels microstructure and properties. Elsevier, BHGoogle Scholar
  5. 5.
    Pandey D, Lele S (1986) Acta Metall 34(3):405–413CrossRefGoogle Scholar
  6. 6.
    Kwon KH, Suh BC, Baik SI, Kim YW, Choi JK, Kim NJ (2013) Sci Technol Adv Mater 14(1):014204Google Scholar
  7. 7.
    Barbier D, Gey N, Allain S, Bozzolo N, Humbert M (2009) Mat Sci Eng A 500:196–206CrossRefGoogle Scholar
  8. 8.
    Nagy E, Mertinger V, Tranta F, Solyom J (2004) Mat Sci Eng A 378:308–313CrossRefGoogle Scholar
  9. 9.
    Mertinger V, Nagy E, Tranta F, Solyom J (2008) Mat Sci Eng A 481–482:718–722CrossRefGoogle Scholar
  10. 10.
    Mertinger V, Nagy E, Benke M, Tranta F (2015) Mat Sci Forum 812:161–166CrossRefGoogle Scholar
  11. 11.
    Mertinger V, Benke M, Nagy E (2015) Mater Today Proc 2S:S673–S676CrossRefGoogle Scholar
  12. 12.
    Lu F, Yang P, Meng L, Cui F, Ding H (2011) J Mater Sci Technol 27(3):257–265CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Marton Benke
    • 1
  • Erzsebet Nagy
    • 2
  • Mate Sepsi
    • 1
  • Peter Pekker
    • 2
  • Valeria Mertinger
    • 1
  1. 1.Institute of Physical Metallurgy, Metalforming and Nanotechnology, University of MiskolcMiskolc-EgyetemvarosHungary
  2. 2.MTA-ME Materials Science Research GroupMiskolc-EgyetemvarosHungary

Personalised recommendations