Advertisement

Two Sides of the Same Coin: Counting and Enumerating Keys Post Side-Channel Attacks Revisited

  • Daniel P. Martin
  • Luke Mather
  • Elisabeth Oswald
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10808)

Abstract

Motivated by the need to assess the concrete security of a device after a side channel attack, there has been a flurry of recent work designing both key rank and key enumeration algorithms. Two main competitors for key ranking can be found in the literature: a convolution based algorithm put forward by Glowacz et al.  (FSE 2015), and a path counting based algorithm proposed by Martin et al.  (Asiacrypt 2015). Both key ranking algorithms can be extended to key enumeration algorithms (Poussier et al.  (CHES 2016) and Martin et al.  (Asiacrypt 2015)). The two approaches were proposed independently, and have so far been treated as uniquely different techniques, with different levels of accuracy. However, we show that both approaches (for ranking) are mathematically equivalent for a suitable choice of their respective discretisation parameter. This settles questions about which one returns more accurate rankings. We then turn our attention to their related enumeration algorithms and determine why and how these algorithms differ in their practical performance.

Keywords

Key rank Key enumeration Side channel attacks 

References

  1. 1.
    Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel security evaluations beyond computing power. IACR Cryptology ePrint Archive 2015/221 (2015). http://eprint.iacr.org/2015/221
  2. 2.
    Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast and memory-efficient key recovery in side-channel attacks. IACR Cryptology ePrint Archive 2015/795 (2015)Google Scholar
  3. 3.
    Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and more efficient rank estimation for side-channel security assessment. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48116-5_6 CrossRefGoogle Scholar
  4. 4.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25 Google Scholar
  5. 5.
    Longo, J., Martin, D.P., Mather, L., Oswald, E., Sach, B., Stam, M.: How low can you go? Using side-channel data to enhance brute-force key recovery. Cryptology ePrint Archive, Report 2016/609 (2016). http://eprint.iacr.org/2016/609
  6. 6.
    Mangard, S., Oswald, E., Standaert, F.X.: One for all - all for one: unifying standard DPA attacks. IET Inf. Secur. 5(2), 100–110 (2011). http://eprint.iacr.org/2009/449 CrossRefGoogle Scholar
  7. 7.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-0-387-38162-6 zbMATHGoogle Scholar
  8. 8.
    Martin, D.P., Mather, L., Oswald, E.: Two sides of the same coin: counting and enumerating keys post side-channel attacks revisited. IACR Cryptology ePrint Archive 019 (2018). http://eprint.iacr.org/2018/019
  9. 9.
    Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of the key rank distribution in the context of side channel evaluations. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_20 CrossRefGoogle Scholar
  10. 10.
    Martin, D.P., Montanaro, A., Oswald, E., Shepherd, D.: Quantum key search with side channel advice. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72565-9_21 Google Scholar
  11. 11.
    Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_13 CrossRefGoogle Scholar
  12. 12.
    Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_13 Google Scholar
  13. 13.
    Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19574-7_17 CrossRefGoogle Scholar
  14. 14.
    Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank estimation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53140-2_4 Google Scholar
  15. 15.
    Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key enumeration algorithm and its application to side-channel attacks. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35999-6_25 CrossRefGoogle Scholar
  16. 16.
    Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_8 CrossRefGoogle Scholar
  17. 17.
    Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? How to determine whether limited side channel information enables key recovery. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16763-3_13 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of BristolBristolUK
  2. 2.Heilbronn Institute for Mathematical ResearchBristolUK
  3. 3.Department of Computer ScienceUniversity of BristolBristolUK

Personalised recommendations