State of the Art and Key Technology of Soft-Bodied Robots

  • Zhisheng Zhang
  • Qi Zhang
  • Fang Jia
  • Yifan Zhou


As a new type of robot, soft-bodied robots have wide potential applications in the fields of exploration and exploitation, rescue, medical service. This paper presents a review on the current research status, which, on the basis of functional characteristics, can be classified as mobile robots, including peristaltic motion, rolling motion, omega-type motion and jumping motion, and operation robots. Moreover, the key technologies of soft-bodied robots, mainly including actuators, active materials, physical modeling, control strategies and manufacture processes, are summarized. Finally, some bottlenecks and research directions on soft-bodied robots in future are discussed as well.


Soft-bodied robots Motion characteristics Drive modes Physical modeling Control strategies Manufacture processes 



This partly supported by the Natural Science Foundation of China, project No. 51275090.


  1. 1.
    Trivedi, D., C.D. Rahn, W.M. Kier, et al. 2008. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics 5 (3): 99–117.CrossRefGoogle Scholar
  2. 2.
    Cao, Y.J., J.Z. Shang, K.S. Liang, et al. 2012. Review of soft-bodied robots. Chinese Journal of Mechanical Engineering 48 (3): 25–31.CrossRefGoogle Scholar
  3. 3.
    Sun, L.N., H.Y. Hu, M.T. Li, et al. 2010. A review on continuum robot. Robot 32 (5): 688–694.Google Scholar
  4. 4.
    Rezaei, S.M., F. Barazandeh, M.S. Haidarzadeh, et al. 2010. The effect of snake muscular system on actuators’ torque. Journal of Intelligent and Robotic Systems: Theory and Application 59 (34): 299–318.CrossRefzbMATHGoogle Scholar
  5. 5.
    Fan, B., H. Jiao, N. Jia, et al. 2014. Design and analysis of the fish-imitated underwater robot. Machine Design Research 30 (2): 242–247.Google Scholar
  6. 6.
    He, B., Z. Wang, Q. Li, et al. 2013. An analytic method for the kinematics and dynamics of a multiple-backbone continuum robot. International Journal of Advanced Robotic Systems 10 (1): 257–271.CrossRefGoogle Scholar
  7. 7.
    You, X.D., X.B. Song, and F. Chen. 2014. Research on the classification and processing manufacturing of soft robots. Processing Automation Instrumentation 35 (8): 5–9.Google Scholar
  8. 8.
    He, B., Z.P. Wang, H.F. Tang, et al. 2014. Review of soft robot. Journal of Tongji University (Natural Science) 42 (10): 1596–1603.Google Scholar
  9. 9.
    Kate, M., G. Bettencourt, J. Marquis, et al. 2008. SoftBot: A soft-material flexible robot based on caterpillar biomechanics. Medford, MA: Tufts University.Google Scholar
  10. 10.
    Yuk, H., D. Kim, H. Lee, et al. 2011. Shape memory alloy-based small crawling robots inspired by C. elegans. Bioinspiration & Biomimetics 6 (4): 1001–1004.Google Scholar
  11. 11.
    Shepherd, R.F., I. Filip, C. Wonjae, et al. 2011. Multigait soft robot. Proceedings of the National Academy of Sciences 108 (51): 20400–20403.CrossRefGoogle Scholar
  12. 12.
    Ma, J.X., M.D. Li, Z.J. Bao, et al. 1999. Micro peristaltic robot simulating earthworm and its control system. Journal Shanghai Jiaotong University 33 (7): 855.Google Scholar
  13. 13.
    Li, Y. 2004. The research on an earthworm-like robot which cove hole under the earth. Shanxi: Northwestern Polytechnical University.Google Scholar
  14. 14.
    Liu, W.T., X.S. Fang, and Y.Q. Chen. 2005. Realizing of SMA actuators for biomimetic earthworm. Chinese Journal of Sensors and Actuators 18 (3): 623.Google Scholar
  15. 15.
    Fu, Y.L., X.L. Li, and Z.G. Liang. 2008. Design of guiding robot for active catheter based on shape memory alloy. Chinese Journal of Mechanical Engineering 44 (9): 76–82.CrossRefGoogle Scholar
  16. 16.
    Du, Y., M. Xu, E. Dong, et al. 2011. A novel soft robot with three locomotion modes. In 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011, 98–103. Phuket: IEEE Press.Google Scholar
  17. 17.
    Koh, J.S., and K.J. Cho. 2009. Omegabot: Biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM). In Proceedings of the 2009 IEEE international conference on robotics and biomimetics, ROBIO 2009, 1154–1159. Guilin: IEEE Press.Google Scholar
  18. 18.
    Du, Y. 2013. The research on the deformable soft robot with multi-locomotion modes. Anhui: University of Science and Technology of China.Google Scholar
  19. 19.
    Menciassi, A., and P. Dario. 2003. Bio-inspired solutions for locomotion in the gastrointestinal tract background and perspectives. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 361 (1811): 2287–2298.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maeda, S. 2008. A study on self-oscillating gel actuator for chemical robotics. Tokyo: Waseda University.Google Scholar
  21. 21.
    Hara, Y., S. Maeda, R. Yoshida et al. 2009. Development of novel self-oscillating molecular robot fueled by organic acid. In 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, 2223–2227. St. Louis, MO: IEEE Press.Google Scholar
  22. 22.
    Nakamaru, S., S. Maeda, Y. Hara, et al. 2009. Development of novel self-oscillating gel actuator for achievement of chemical robot. In 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, 4319–4324. St. Louis, MO: IEEE Press.Google Scholar
  23. 23.
    Nakagawa, H., Y. Hara, S. Maeda, et al. 2010. A novel design of nanofibrous gel actuator by electrospinning. In 2010 10th IEEE conference on nanotechnology, NANO 2010, 1135–1138. Ilsan, Gyeonggi-Do: IEEE Press.Google Scholar
  24. 24.
    Kimura, H., F. Kajimura, D. Maruyama, et al. 2006. Flexible hermetically sealed mobile robot for narrow spaces using hydrostatic skeleton driving mechanism. In 2006 IEEE/RSJ international conference on intelligent robots and systems, IROS 2006, 4006–4011. Beijing: IEEE Press.Google Scholar
  25. 25.
    Lin, H.T., G.G. Leisk, and B. Trimmer. 2011. GoQBot: A caterpillar inspired soft-bodied rolling robot. Bioinspiration & Biomimetics 6 (2): 26007–26020(14).Google Scholar
  26. 26.
    Zheng, J., X. Song, Z. Jiang, et al. 2014. The driving force mechanism and control strategy of a pneumatic hydrostatic soft robot. Robot 36 (5): 513–518.Google Scholar
  27. 27.
    Shepherd, R.F., A.A. Stokes, F. Jacob, et al. 2013. Using explosions to power a soft robot. Angewandte Chemie 125 (10): 2964.CrossRefGoogle Scholar
  28. 28.
    Sugiyama, Y., and S. Hirai. 2006. Crawling and jumping by a deformable robot. The International Journal of Robotics Research 25 (5–6): 603–620.CrossRefGoogle Scholar
  29. 29.
    Bartlett, N.W., M.T. Tolley, J.T.B. Overvelde, et al. 2015. A 3D-printed, functionally graded softrobot powered by combustion. Science 349 (6244): 161–165.CrossRefGoogle Scholar
  30. 30.
    Matzner, H., and Y.B. Gutfreund. 2000. Neuromuscular system of the flexible arm of the octopus physiological characterization. Journal of Neurophysiology 83 (3): 1315–1328.CrossRefGoogle Scholar
  31. 31.
    Rokni, D., and B. Hochner. 2002. Ionic currents underlying fast action potentials in the obliquely striated muscle cells of the octopus arm. Journal of Neurophysiology 88 (6): 3386–3397.CrossRefGoogle Scholar
  32. 32.
    Laschi, C., M. Cianchetti, B. Mazzolai, et al. 2012. Soft robot arm inspired by the octopus. Advanced Robotics 26 (7): 709–727.CrossRefGoogle Scholar
  33. 33.
    Zheng, T., D.T. Branson, E. Guglielmino, et al. 2013. Model validation of an octopus inspired continuum robotic arm for use in underwater environments. Journal of Mechanisms and Robotics 5 (2): 1567–1576.CrossRefGoogle Scholar
  34. 34.
    Cianchetti, M., V. Mattoli, B. Mazzolai, et al. 2002. A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensors and Actuators B: Chemical 142 (11): 288–297.Google Scholar
  35. 35.
    Li, T., K. Nakajima, M. Calisti, et al. 2012. Octopus inspired sensorimotor control of a multi-arm soft robot. In 2012 9th IEEE international conference on mechatronics and automation, ICMA 2012, 948–955. Chengdu: IEEE Press.Google Scholar
  36. 36.
    Kuwabara, J., K. Nakajima, R. Kang, et al. 2012. Timing-based control via echo state network for soft robotic arm. In 2012 international joint conference on neural networks, IJCNN 2012, 1–8. Brisbane, QLD: IEEE Press.Google Scholar
  37. 37.
    Martinez, R.V., J.L. Branch, C.R. Fish, et al. 2013. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Advanced Materials 25: 205–212.CrossRefGoogle Scholar
  38. 38.
    Stommel, M., and W.L. Xu. 2015. Optimal, efficient sequential control of a soft-bodied, peristaltic sorting table. IEEE Transactions on Automation Science and Engineering 12: 1–10.CrossRefGoogle Scholar
  39. 39.
    Stommel, M., W.L. Xu. 2015. Qualitative control of soft robotic peristaltic sorting tables. In 2015 IEEE international conference on mechatronics, ICM 2015, 82–87. Nagoya: IEEE Press.Google Scholar
  40. 40.
  41. 41.
    Menciassi, A., S. Gorini, G. Pernorio, et al. 2004. A SMA actuated artificial earthworm. In Proceedings 2004 IEEE international conference on robotics and automation, 3282–3287. New Orleans, LA: IEEE Press.Google Scholar
  42. 42.
    Seok, S., C.D. Onal, R. Wood, et al. 2010. Peristaltic locomotion with antagonistic actuators in soft robotics. In IEEE international conference on robotics and automationICRA 2010, 1228–1233. Anchorage, AK: IEEE Press.Google Scholar
  43. 43.
    Seok, S., C.D. Onal, K.J. Chok, et al. 2012. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Transactions on Mechatronics 18 (5): 1485.CrossRefGoogle Scholar
  44. 44.
    Mao, S., E. Dong, H. Jin, et al. 2014. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. Journal of Bionic Engineering 11 (3): 400–411.CrossRefGoogle Scholar
  45. 45.
  46. 46.
    Li, D.S., and L. Nie. 2007. Analysis on dynamics for flexible leg of ICPF actuated tortoise-like micro-robot. In Proceedings of the 2007 IEEE international conference on mechatronics and automation, ICMA 2007, 1102–1107. Harbin: IEEE Press.Google Scholar
  47. 47.
    Otake, M., Y. Kagami, M. Inaba, et al. 2002. Motion design of a starfish-shaped gel robot made of electro-active polymer gel. Robotics and Autonomous Systems 40 (02): 185–191.CrossRefGoogle Scholar
  48. 48.
    Otake, M., Y. Kagami, and H. Inoue. 2004. Pattern formation theory for electroactive polymer gel robots. In 2004 IEEE international conference on robotics and automation, 2782–2787. New Orleans, LA: IEEE Press.Google Scholar
  49. 49.
    Li, C., Y.H. Xie, X.Q. Huang, et al. 2013. Novel dielectric elastomer structure of soft robot. In Electroactive polymer actuators and devices (EAPAD) 2015, 1–5. San Diego, CA.Google Scholar
  50. 50.
    Steltz, E., A. Mozeika, et al. 2009. Jamming skin enabled locomotion. In 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, 5672–5677. St. Louis, MO: IEEE Press.Google Scholar
  51. 51.
    Fei, Y.Q., H.Y. Lv, and X.Y. Shen. 2013. Moving mode of modular soft robot. Journal Shanghai Jiaotong University 47 (12): 1870–1873.Google Scholar
  52. 52.
    Mosadegh, B., P. Polygerinos, C. Keplinger, et al. 2014. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials 24 (15): 2163–2170.CrossRefGoogle Scholar
  53. 53.
    Wang, E., M.S. Desai, and S.W. Lee. 2013. Light-controlled graphene-elastin composite hydrogel actuators. Nano Letters 13 (6): 2826–2830.CrossRefGoogle Scholar
  54. 54.
    Van Griethuijsen, L.I., and B.A. Trimmer. 2009. Kinematics of horizontal and vertical caterpillar crawling. Journal of Experimental Biology 212 (10): 1455–1462.CrossRefGoogle Scholar
  55. 55.
    Woods, W., and S.B. Fusillo. 2008. Dynamic properties of a locomotory muscle of the tobacco hornworm Manduca Sexta during strain cycling and simulated natural crawling. Journal of Experimental Biology 211 (6): 873–882.CrossRefGoogle Scholar
  56. 56.
    Yoram, Y., M. Rea, H. Binyamin, et al. 2007. Analyzing octopus movements using three-dimensional reconstruction. Journal of Neurophysiology 98 (3): 1775–1790.CrossRefGoogle Scholar
  57. 57.
    Liang, Y., R.M. Mcmeeking, and A.G. Evans. 2006. A finite element simulation scheme for biological muscular hydrostats. Journal of Theoretical Biology 242(1): 142–150 (2006).Google Scholar
  58. 58.
    Renda, F., M. Giorelli, M. Calisti, et al. 2014. Dynamic model of a multi-bending soft robot arm driven by cables. IEEE Transactions on Robotics 30 (5): 1109–1122.CrossRefGoogle Scholar
  59. 59.
    He, G.P., and Z. Lu. 2005. Self-reconfiguration of under actuated redundant manipulators with optimizing the flexibility ellipsoid. Chinese Journal of Mechanical Engineering 18 (1): 92–97.CrossRefGoogle Scholar
  60. 60.
    Bar-Cohen, Y. 2004. Electroactive polymer (EAP) actuators as artificial muscles, reality, potential, and challenges. Scitech Book News.Google Scholar
  61. 61.
    Kuksenok, O., and A.C. Balazs. 2013. Modeling the photoinduced reconfiguration and directed motion of polymer gels. Advanced Functional Materials 23 (36): 4601–4610.CrossRefGoogle Scholar
  62. 62.
    Letizia, Z., S. German, A. Claudio, et al. 2009. Nonsomatotopic organization of the higher motor centers in octopus. Current Biology 19 (19): 1632–1636.CrossRefGoogle Scholar
  63. 63.
    Pfeifer, R., F. Iida, and J. Bongard. 2005. New robotics: Design principles for intelligent systems. Artificial Life 11 (1): 1–2.Google Scholar
  64. 64.
    Pfeifer, R., M. Lungarella, and F. Iida. 2007. Self-organization, embodiment, and biologically inspired robotics. Science 318 (5853): 1088–1093.CrossRefGoogle Scholar
  65. 65.
    Branson, D.T., R. Kang, E. Guglielmono, et al. 2012. Control architecture for robots with continuum arms inspired by octopus vulgaris neurophysiology. In 2012 IEEE international conference on robotics and automation, ICRA 2012, 5283–5288. Saint Paul: IEEE Press.Google Scholar
  66. 66.
    Cho, K.J., J.S. Koh, S. Kim, et al. 2009. Review of manufacturing processes for soft biomimetic robots. International Journal of Precision Engineering and Manufacturing 10 (3): 171–181.CrossRefGoogle Scholar
  67. 67.
  68. 68.
    McClung, A.J., J.G. Cham, and M.R. Cutkosky. 2004. Rapid maneuvering of a biologically inspired hexapedal robot. In 2004 ASME international mechanical engineering congress and exposition, IMECE, 1195–1202. Anaheim, CA: IEEE Press.Google Scholar
  69. 69.
    Kim, S., M. Spenko, S. Trujillo, et al. 2007. Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot. In 2007 IEEE international conference on robotics and automation, ICRA’07, 1268–1273. Rome: IEEE Press.Google Scholar
  70. 70.
    Wood, R.J., S. Avadhanula, R., Sahai, et al. 2008. Microrobot design using fiber reinforced composites. Journal of Mechanical Design, Transactions of the ASME 130(5): 680–682.Google Scholar
  71. 71.
  72. 72.
    Leester-Schädel, M., B. Hoxhold, C. Lesche, et al. 2008. Micro actuators on the basis of thin SMA foils. Microsystem Technologies 14 (4): 697–704.CrossRefGoogle Scholar
  73. 73.
    Wood, R.J. 2008. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics 24 (2): 341–347.CrossRefGoogle Scholar
  74. 74.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zhisheng Zhang
    • 1
  • Qi Zhang
    • 1
  • Fang Jia
    • 1
  • Yifan Zhou
    • 1
  1. 1.School of Mechanical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations